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TRISTRAM DE PIRO

Abstract. We give a proof of a Martingale Representation The-
orem using the methods of nonstandard analysis.

We introduce the following spaces;

Definition 0.1. Let ν ∈ ∗N \N , and set η = 2ν. Define;

Ωη = {x ∈ ∗R : 0 ≤ x < 1}

Tν = {x ∈ ∗R : 0 ≤ x ≤ 1}

We let Cη consist of internal unions of the intervals [ i
η
, i+1
η

), for

0 ≤ i ≤ η − 1, and let Dν consist of internal unions [ i
ν
, i+1
ν

), for
0 ≤ i ≤ ν − 1, together with {1}

We define counting measures µη and λν on Cη and Dν respectively,
by setting µη([

i
η
, i+1
η

)) = 1
η
, λν((

i
ν
, i+1
ν

]) = 1
ν

and λν({1}) = 0

We let (Ωη, Cη, µη) and (T ν ,Dν , λν) be the resulting ∗-finite measure
spaces, in the sense of [4], and let (Ωη, L(Cη), L(µη)), (T ν , L(Dν), L(λν))
be the associated Loeb spaces.

We let V (Cη) = {f : Ωη → ∗C, f(x) = f( [ηx]
η

)} and W (Cη) ⊂ V (Cη)
be the set of measurable functions f : Ωη → ∗C, with respect to Cη, in the
sense of [4]. Then W (Cη) is a ∗-finite vector space over ∗C, of dimension

η, (1). Similarly, we let V (Dν) = {f : Tν → ∗C, f(t) = f( [νt]
ν

)} and

1 By a ∗-vector space, one means an internal set V , for which the operations
+ : V × V → V of addition and scalar multiplication . : ∗C × V → V are internal.
Such spaces have the property that ∗-finite linear combinations ∗Σi∈Iλi.vi, (∗), for
a ∗-finite index set I, belong to V , by transfer of the corresponding standard result
for vector spaces. We say that V is a ∗-finite vector space, if there exists a ∗-finite
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W (Dν) ⊂ V (Dν) be the set of measurable functions f : Tν → ∗C, with
respect to Dν, in the sense of [4]. Then W (Dν) is a ∗-finite vector space
over ∗C, of dimension ν + 1.

Definition 0.2. Given n ∈ N>0, we let Ωn = {m ∈ N : 0 ≤ m < 2n},
and let Cn be the set of sequences of length n, consisting of 1’s and
−1’s. We let θn : Ωn → N n be the map which associates m ∈ Ωn

with its binary representation, and let φn : Ωn → Cn be the compo-
sition φn = (γ ◦ θn), where, for m̄ ∈ N n, γ(m̄) = 2.m̄ − 1̄. For
ν ∈ ∗N \N , we let φν : Ων → Cν be the map, obtained by transfer of
φn, which associates i ∈ ∗N , 0 ≤ i < 2ν, with an internal sequence
of length ν, consisting of 1’s and −1’s. Similarly, for η = 2ν, we let
ψη : Ωη → Cν be defined by ψη(x) = φν([ηx]). For 1 ≤ j ≤ ν, we let
ωj : Cν → {1,−1} be the internal projection map onto the j’th coordi-
nate, and let ωj : Ωη → {1,−1} also denote the composition (ωj ◦ ψη),
so that ωj ∈ W (Ωη). By convention, we set ω0 = 1. For an internal
sequence t ∈ Cν, we let ωt : Ωη → {1,−1} be the internal function
defined by;

ωt =
∏

1≤j≤ν ω
t(j)+1

2
j

Again, it is clear that ωt ∈ W (Ωη).

Lemma 0.3. The functions {ωj : 1 ≤ j ≤ ν} are ∗-independent in
the sense of [2], (Definition 19), in particular they are orthogonal with
respect to the measure µη. Moreover, the functions {ωt : t ∈ Cν}
form an orthogonal basis of V (Ωη), and, if t 6= −1, Eη(ωt) = 0, and
V arη(ωt) = 1, where, Eη and V arη are the expectation and variance
corresponding to the measure µη.

Proof. According to the definition, we need to verify that for an in-
ternal index set J = {j1, . . . , js} ⊆ {1, . . . , ν}, and an internal tuple
(α1, . . . , αs), where s = |J |;

µη(x : ωj1(x) < α1, . . . , ωjk(x) < αk, . . . , ωjs(x) < αs)

index set I and elements {vi : i ∈ I} such that every v ∈ V can be written as a
combination (∗), and the elements {vi : i ∈ I} are independent, in the sense that
if (∗) = 0, then each λi = 0. It is clear, by transfer of the corresponding result for
finite dimensional vector space over C, that V has a well defined dimension given
by Card(I), see [5], even though V may be infinite dimensional, considered as a
standard vector space.
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=
∏s

k=1 µη(x : ωjk(x) < αk) (∗)

Without loss of generality, we can assume that each αjk > −1, as if
some αjk ≤ −1, both sides of (∗) are equal to zero. Let J ′ = {j′ ∈ J :
−1 < αj′ ≤ 1} and J ′′ = {j′′ ∈ J : 1 < αj′′}, so J = J ′ ∪ J ′′. Then;

µη(x : ωj1(x) < α1, . . . , ωjs(x) < αs)

= 1
η
Card(z ∈ Cν : z(j′) = −1 for j′ ∈ J ′, z(j′′) ∈ {−1, 1} for j′′ ∈ J ′′)

= 1
2ν
Card(z ∈ Cν : z(j′) = −1 for j′ ∈ J ′) = 2ν−s

′

2ν
= 2−s

′

where s′ = Card(J ′). Moreover;∏s
k=1 µη(x : ωjk(x) < αk) =

∏
j′∈J ′ µη(x : ωj′(x) = −1) = 2−s

′

as µη(x : ωj(x) = −1) = 1
2
, for 1 ≤ j ≤ ν. Hence, (∗) is shown. That

∗-independence implies orthogonality follows easily by transfer, from
the corresponding fact, for finite measure spaces, that E(Xj1Xj2) =
E(Xj1)E(Xj2), for the standard expectation E and independent ran-
dom variables {Xj1 , Xj2}, (∗∗). Hence, by (∗∗);

Eη(ωj1ωj2) = Eη(ωj1)Eη(ωj2) = 0, (j1 6= j2) (∗ ∗ ∗)

as clearly Eη(ωj) = 0, for 1 ≤ j ≤ ν. If t 6= −1, let J ′ = {j′ : 1 ≤
j′ ≤ ν, t(j′) = 1}, then;

Eη(ωt) = Eη(
∏

1≤j≤ν ω
t(j)+1

2
j ) = Eη(

∏
j′∈J ′ ωj′) =

∏
j′∈J ′ Eη(ωj′) = 0 (])

where, in (]), we have used the facts that J ′ 6= ∅ and internal, and
a simple generalisation of (∗ ∗ ∗), by transfer from the correspond-
ing fact for finite measure spaces. Hence, 1 = ω−1 is orthogonal
to ωt, for t 6= −1. If t1 6= t2 are both distinct from −1, then, if
J1 = {j : 1 ≤ j ≤ ν, t1(j) = 1} and J2 = {j : 1 ≤ j ≤ ν, t2(j) = 1}, so
J1 6= J2 and J1, J2 6= ∅, we have;

Eη(ωt1ωt2)

= Eη(
∏

j∈J1 ωj.
∏

j∈J2 ωj) (]])
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= Eη(
∏

j∈(J1\J2) ωj.
∏

j∈(J2\J1) ωj) (]]])

= Eη(
∏

j∈(J1\J2) ωj)Eη(
∏

j∈(J2\J1) ωj) = 0 (]]]])

In (]]), we have used the definition of J1 and J2, and in (]]]), we have
used the fact that (J1∪J2) = (J1∩J2)t(J1\J2)t(J2\J1), and ω2

j = 1,
for 1 ≤ j ≤ ν. Finally, in (]]]]), we have used the facts that (J1 \ J2)
and (J2 \ J1) are disjoint, and at least one of these sets is nonempty,
the result of (]) and a similar generalisation of (∗ ∗ ∗). This shows that
the functions {ωt : t ∈ Cν} are orthogonal, (∗ ∗ ∗∗). That they form
a basis for V (Ωη) follows immediately, by transfer, from (∗ ∗ ∗∗) and
the corresponding fact for finite dimensional vector spaces. The final
calculation is left to the reader. �

We require the following;

Definition 0.4. For 0 ≤ l ≤ ν, we define ∼′l, on Cν, to be the internal
equivalence relation given by;

t1 ∼′l t2 iff t1(j) = t2(j) (∀j ≤ l)

We extend this to an internal equivalence relation on Ωη, which we
denote by ∼l;

x1 ∼l x2 iff ψη(x1) ∼l ψη(x2) (∗)

We let Clη be the ∗-finite algebra generated by the partition of Ωη into

the 2l equivalence classes with respect to ∼l, (∗). As is easily verifed,
we have Cllη ⊆ Cl2η , if l1 ≤ l2, C0

η = {∅,Ωη} and Cη = Cνη . For 0 ≤ l ≤ ν,

we let W (Clη) ⊆ W (Cη) be the set of measurable functions f : Ωη → ∗C,

with respect to Clη. We will refer to the collection {Clη : 0 ≤ l ≤ ν}
of ∗-finite algebras, as the nonstandard filtration associated to Ωη. We
produce a standard filtration {Dt : t ∈ [0, 1]}, (∗∗), by following the
method of [2], see Definition 7.14 of [5], (replacing the equivalence re-
lation ∼ there, by ∼l, as given in (∗), and being careful to use the index
ν instead of η. Note that Lemma 7.15 of [5] still applies in this case.)
We also require a slight modification of the construction of Brownian
motion in [2]. Namely, we take;
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χ(t, x) = 1√
ν
(∗
∑[νt]

i=1ωi), (2)

and W (t, x) = ◦χ(t, x), (t, x) ∈ [0, 1]× Ωη (∗∗).

One of the advantages of the non-standard approach to stochastic
calculus, is that it allows one to show easily that every stochastic in-
tegral is a martingale. We follow the notation from Chapter 7 of [5],
again using the filtration (∗∗) of Definition 0.4 to replace the one from
Definition 7.14, and its subsequent applications;

Theorem 0.5. If g ∈ G0, and f is a 2-lifting of g, then I(t, x), as
in Definition 7.20 of [5], is equivalent, as a stochastic process, to a
martingale, with respect to the filtration Dt, (3).

2 We adopt the convention that the sum is zero, when t = 0
3 By which I mean a function I : [0, 1]× Ωη → R, such that;

(i). I is B×D measurable (complete product).

(ii). It is measurable with respect to Dt, for t ∈ [0, 1].

(iii). E(|It|) <∞, for t ∈ [0, 1].

(iv). E(It|Ds) = Is, if s < t belong to [0, 1].

(v). For C ⊂ Ωη, with L(µη)(C) = 1, and x ∈ C, the paths γx : [0, 1]→ R,
where γx(t) = I(t, x), are continuous.

Most of this definition can be found in [7], see also [8] for a thorough discussion
of discrete time martingales. We call a martingale tame if it satisfies the additional
conditions that;

(vi). I1 ∈ L2(Ωη, L(µη)) and, for 0 ≤ s < t ≤ 1;∫
Ωη

(I2
t − I2

s )dL(µη) ≤ C(t− s)

where C ∈ R≥0

(vii) (UI) For a.a.s, 0 ≤ s < 1 and sufficiently small h > 0, [I]s+h−[I]s
h is strongly

uniformly integrable in the sense that that there exists f : R → R, with f ≥ 0 and
limx→∞f(x) = 0 such that, for K > 0, K ∈ R;∫

[I]s+h−[I]s

h >K

[I]s+h−[I]s
h dL(µη) < f(K).

where [I] denotes the quadratic variation of the process I.
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Proof. Let I ′ be the modification of I, as given in the proof of Theorem
7.25 of [5]. Then I ′ and agree I on [0, 1] × C, where P (C) = 1, and
P = L(µη), so they are equivalent as stochastic processes. We show
that I ′ is a martingale.

(i) follows from the fact that I is B×D measurable, and I = I ′ a.e
µ× L(µη), (∗). Here, completeness of the product is required.

(ii). By the construction in the proof of Theorem 7.25 of [5], I ′t is
measurable with respect to D′t ⊂ Dt.

(iii). We have, for t ∈ [0, 1];∫
Ωη
I ′2(t, x)dL(µη) =

∫
Ωη
I2(t, x)dL(µη)

=
∫

Ωη
◦F 2(t, x)dµη

≤ ◦
∫

Ωη
F 2(t, x)dµη

= ◦ ∫
Ωη

∫ t
0
f 2(t, x)dλνdµη = ||g||2

L2([0,t]×Ωη)
(†)

using (∗), Definition 7.20, (see notation in Theorem 7.24), Theorem
3.16 and the proof of Theorem 7.22 in [5]. Hence I ′t ∈ L2(Ωη, Cη, P ), so
I ′t ∈ L1(Ωη, Cη, P ), by Holder’s inequality, see [6].

(iv). Suppose s < t. We first show that E(I ′t|D′s) = I ′s, (††). Suppose
i ∈ ∗N , with i

ν
' s, then we claim that E(I ′t|σ(Ciη)comp) = I ′s, (∗∗). As

It = I ′t a.e P , we have E(I ′t|σ(Ciη)comp)) = E(It|σ(Ciη)comp)). We can

also see that Ft ∈ SL2(Ωη, Cη, µη). This follows from the calculation
(†), Theorem 3.34(i) of [5], and the fact that;∫

Ωη
I2(t, x)dL(µη) = ||g||2

L2([0,t]×Ωη)

by Ito’s isometry, as g ∈ G0. Hence, by Theorem 3.34(iv) of [5],
Ft ∈ SL1(Ωη, Cη, µη), (∗∗∗). Applying Theorem 7.3(ii) of [5] and (∗∗∗);

E(It|σ(Ciη)comp) = E(◦Ft|σ(Ciη)comp) = ◦E(Ft|Ciη)

We have;
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E(Ft|Ciη) =
∑i−1

j=0 f( j
ν
, x)

ωj+1√
ν

by ∗-independence of the sequence {ωj}0≤j≤[νt]+1. Letting s′ = i−1
ν

,
so s′ ' s, E(Ft|Ciη) = Fs′ . We have, using Theorem 7.24 of [5], that

Is = Is′ a.e P , so I ′s = Is = Is′ a.e P . As I ′s is σ(Ciη)comp-measurable,

we have E(I ′t|(Ciη)comp) = I ′s, showing (∗∗). As D′s ⊂ σ(Ciη)comp, and I ′s
is D′s-measurable, we have E(I ′t|D′s) = I ′s, showing (††).

If A ∈ Ds, then, by Lemma 7.15(i) of [5], A ∈ D′s1 , for s < s1 < t.
As E(I ′t|D′s1) = I ′s1 , to show (iv), it is sufficient to prove that;∫

A
I ′sdL(µη) = lims1→s

∫
A
I ′s1dL(µη) (†††)

To show (†††), observe that ||I ′s1 − I ′s||22 ≤ ||g[0,s1] − g[0,s]||22 by (†),
where g[0,s1] is obtained by truncating the function g to the interval
[0, s1], (4). Using Holder’s inequality and the DCT, we have lims1→s||I ′s1−
I ′s||1 ≤ lims1→s||g[0,s1] − g[0,s]||1 = 0. Therefore, (†††) is shown. This
proves (iv).

(v). This is Theorem 25 of [2].

�

We proceed to show the converse, that every martingale can be rep-
resented as a stochastic integral, using the nonstandard approach.

Lemma 0.6. For 0 ≤ l ≤ ν, a basis of the ∗-finite vector space W (Clη)
is given by Dl =

⋃
0≤m≤lBm, where, for 1 ≤ m ≤ ν, Bm = {ωt : t(m) =

1, t(m′) = −1,m < m′ ≤ ν}, and B0 = {ω−1}.

Proof. The case when l = 0 is clear as ω−1 = 1, and using the descrip-
tion of C0

η in Definition 0.4. Using the observation (∗) there, we have,

for 1 ≤ l ≤ ν, that W (Clη) is a ∗-finite vector space of dimension 2l.

Using Lemma 0.3, and the fact that Card(Dl) = 2l, it is sufficient to
show each ωt ∈ Dl is measurable with respect to Clη. We have that, for

1 ≤ j ≤ l, ωj is measurable with respect to Cjη ⊆ Clη. Hence, the result
follows easily, by transfer of the result for finite measure spaces, that
the product Xj1Xj2 , of two measurable random variables Xj1 and Xj2

is measurable.

4Technically, you need to show that Is1 is the non standard stochastic integral
of g[0,s1], and then apply Theorem 7.22 of [5], however, this is clear by truncating

the corresponding lift of g.
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�

Definition 0.7. We define a nonstandard martingale to be a Dν ×Cη-
measurable function Y : Tν × Ωη → ∗C, such that;

(i). For t ∈ Tν, Y [νt]
ν

is measurable with respect to C[νt]
η .

(ii). Eη(Y [νt]
ν

|C[νs]
η ) = Y [νs]

ν

, for (0 ≤ s ≤ t ≤ 1).

(iii). Eη(|Y [νt]
ν

|) is finite.

We say that Y is S-continuous, if there exists C ⊂ Ωη with L(µη)(C) =
1, such that for x ∈ C, Y (t, x) ' Y (s, x), when s ' t, and each Y (t, x)
is near standard. We say that Y has infinitesimal increments if, for

all x ∈ Ωη, and t ∈ Tν, t 6= 1, Y ( [tν]+1
ν
, x) ' Y ( [tν]

ν
, x).

Lemma 0.8. Let Y : Tν ×Ωη → ∗R be a Dν ×Cη-measurable function,
satisfying (i) and (ii) of Definition 0.7, then;

Yt(x) =
∑[νt]

j=0 cj(t, x)ωj(x) (∗)

where c0 : [0, 1] × Ωη → ∗C is Dν × C0
η-measurable, cj : [ j

ν
, 1] ×

Ωη → ∗C is Dν × Cj−1
η -measurable, for 1 ≤ j ≤ ν, and c0(s, x) =

c0(t, x), for 0 ≤ s ≤ t ≤ 1, cj(s, x) = cj(t, x), for j
ν
≤ s ≤ t ≤ 1.

Conversely, if {cj : 0 ≤ j ≤ ν} is a collection of functions satisfying the
above conditions, then the definition (∗) produces a Dν×Cη-measurable
function, satisfying (i) and (ii) of Definition 0.7.

Proof. Using (ii), we have that Eη(Yt) = Eη(Yt|C0
η) = Y0. Replacing Yt

by Yt − Y0, we can, without loss of generality, assume that Eη(Yt) = 0,
for t ∈ ∗[0, 1]. By (i) and Lemma 0.6;

Yt =
∑[νt]

j=1 cj(t, x)ωj(x)

where;

cj(t, x) =
∑j−1

a=0

∑j−1
i0<...<ia;0 p

(i0,...,ia)
j (t)ωi0 . . . ωia(x)

Clearly, cj is Dν × Cj−1
η -measurable. Again, using (ii), and the

fact that ck(t, x)ωk is orthogonal to the basis D[νs] of W (C[νs]
η , for

[νs] < k ≤ [νt], (†), we have;



A SIMPLE PROOF OF A MARTINGALE REPRESENTATION THEOREM USING NONSTANDARD ANALYSIS9∑[νs]
j=1 cj(t, x)ωj(x) =

∑[νs]
j=1 cj(s, x)ωj(x)

Equating coefficients, and using the fact that Dj is a basis for W (Cjη),
for 1 ≤ j ≤ [νs], we obtain cj(s, x) = cj(t, x), for all j

ν
≤ s ≤ t ≤ 1.

The converse is easy to check. (i) is obtained, observing that for

t ∈ Tν , all the functions cj,t and ωj are measurable with respect to C[νt]
η ,

for 0 ≤ j ≤ [νt]. To obtain (ii), just take the conditional expectation
of (∗) and make the observation † again.

�

Lemma 0.9. Let X be a martingale, see footnote 3 for the definition,
with the extra condition that X1 ∈ L2(Ωη), then there exists a nonstan-
dard martingale X, see Definition 0.7, with ◦(X t) = X◦t, for t ∈ Tν,
a.e L(µη), and such that the sequence {X i

ν
: 0 ≤ i ≤ ν} ⊂ SL2(Ωη, µη).

Moreover, X is S-continuous, and we can take X to have infinitesimal
increments.

Proof. By (i) of footnote 3, we have X is B×D-measurable. We claim
that X ∈ L1([0, 1]×Ωη), (∗). Without loss of generality, we can assume
that X ≥ 0, (5) Then (∗) follows from the fact that, for 0 ≤ t ≤ 1,
E(Xt) = E(Xt|D0) = X0, by (iv) of footnote 3, and so;∫

[0,1]×Ωη
X(t, x)d(L(λν)× L(µη)) = X0 <∞

by (iii) of footnote 3 and Fubini’s theorem, see [6]. By the hy-
pothesis that X1 ∈ L2(Ωη), and using Theorem 7 of [2], see also
Theorems 3.31 and 3.34 of [5], we can find V ∈ SL2(Ωη, µη), with
(◦V ) = X1, a.e L(µη), (†). We now define X : T ν ×Ωη → ∗C by taking

X(t, x) = (Eη(V |C[νt]
η ))(x). We may assume that X is Dν ×Cη measur-

able, by the definition of Eη(|), see footnote 25 of Chapter 7, [5], and

5 In order to see this, it is sufficient to show that X+ is a martingale, (∗). We
have X = X+ −X−, and, by (iv), for 0 ≤ t ≤ 1;

Xt = X+
t −X−t = E(X1|Dt) = E(X+

1 −X
−
1 |Dt) = Yt − Y ′t (∗∗)

where Yt = E(X+
1 |Dt) and Y ′t = E(X−1 |Dt). It follows easily, modifying Y

to Y 1, and Y ′ to Y
′,1, a.e L(λν) × L(µη), if necessary, and, using the tower law

and definition of conditional expectations, see [8], that Y, Y ′ are martingales and
Y, Y ′ ≥ 0. We then have, by (∗∗), that X+

t = Yt and X−t = Y ′t a.e L(µη). Hence,
(∗) is shown.
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transfer of the corresponding result for finite measure spaces. Then,
by Theorem 7.3 of [5];

(◦X)(t, x) = ◦(Eη(V |C[νt]
η ))(x) = E((◦V )|σ(C[νt]

η )comp) (∗∗)

Moreover, if A ∈ σ(C[νt]
η )comp, we have;∫

A
X◦tdL(µη) = limt′→◦t

∫
A
Xt′dL(µη) =

∫
A
X1dL(µη) (∗ ∗ ∗)

using (iv),(v) of footnote 3 and the result of (∗) to apply the DCT .

Hence, as D◦t ⊂ σ(C[νt]
η )comp ⊂ Dt′ , for 0 ≤ ◦t < t′, using (∗∗) in Defi-

nition 0.4, we have;

E((◦V )|σ(C[νt]
η )comp) = E((◦V )|D◦t) = E(X1|D◦t) = X◦t

by (∗ ∗ ∗), (†) and (iv) of footnote 3. By (∗∗), we then have (◦X t) =
X◦t, a.e L(µη). We now verify conditions (i), (ii), (iii) of Definition
0.7. (i) is clear by Definition of X and footnote 25 of Chapter 7, [5].
(ii) follows by transfer of the tower law for the conditional expectation
Eη(|), see again footnote 25 of Chapter 7. (iii) follows immediately
from the fact that V ∈ SL2(Ωη, µη), and;

|Eη(X t)| = |Eη(V )| ≤ Eη(|V |) ≤ ||V ||SL2 ' ||X1||L2 < ∞ (for
t ∈ Tν)

by transfer of Holders inequality, the definition of Eη(|), and prop-
erty (ii) in Definition 0.7. Finally, using Theorem 7.3 of [5], we have
that the sequence {X i

ν
: 0 ≤ i ≤ ν} ⊂ SL2(Ωη, µη). The S-continuity

claim follows from the proof of Theorem 8.1 in [3]. We omit the details.
For the final claim, we modify X to obtain the final condition, while
preserving the other properties. For n ∈ ∗N , we let;

Vn = {x : ∃t(|∆X(t, x)| ≥ 1
n
)}, (6)

By S-continuity of X, we have that the internal set A = {n ∈ ∗N :
µη(Vn) ≤ 1

n
} contains N , hence, it contains an infinite element κ. For

x ∈ Vκ, we let τ(x) be the first t such that |∆X(t, x)| ≥ 1
κ

and let

6We use the notation ∆X(t, x) to denote the increment X(t + 1
ν , x) − X(t, x),

for 0 ≤ t ≤ 1− 1
ν
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τ(x) = 1 otherwise. We let W be the internal process defined by;

W 0 = X0

∆W (x, t) = ∆X(x, t), if t < τ(x).

∆W (x, t) = 0, if t ≥ τ(x).

We claim that W is a nonstandard martingale in the sense of Defini-
tion 0.7. For (i), by hyperfinite induction, and the fact that W 0 = X0,
it is sufficient to show that if W i−1

ν
is measurable with respect to Ci−1

η ,

then W i
ν

is measurable with respect to Ciη, for 1 ≤ i ≤ ν, (††). If

x ∼i x′, we have that i−1
ν

< τ(x) iff i−1
ν

< τ(x′), as this is an in-

ternal definition depending only on information up to time i
ν
, hence

must contain the equivalence class [x]∼i . In this case, we have that
W (x, i

ν
) = W (x, i−1

ν
) + ∆X(x, i−1

ν
), which is constant on [x]∼i , us-

ing the inductive hypothesis and measurability of X. The case when
i−1
ν
≥ τ(x) is similar. Hence, (††) and (i) are shown. For (ii), it is

sufficient to show that if x ∈ Ωη, then;∫
[x]∼i−1

W i−1
ν
dµη =

∫
[x]∼i−1

W i
ν
dµη, for 1 ≤ i ≤ ν (†††)

Clearly, if i−1
ν
≥ τ(x′), for all x′ ∈ [x]∼i−1

, then ∆W (x, i−1
ν

)|[x]∼i−1
=

0, and the result (†††) follows trivially. Similarly, if i−1
ν
< τ(x′), for

all x′ ∈ [x]∼i−1
, then W |[x]∼i−1×[ i−1

ν
, i+1
ν

) = X|[x]∼i−1×[ i−1
ν
, i+1
ν

), and the

result (†††) follows from the martingale property of X. We can, there-
fore, write [x]∼i−1

= [x1]∼i ∪ [x2]∼i , and assume that i−1
ν
< τ(x′), for

all x′ ∈ [x1]∼i , and i−1
ν
≥ τ(x′), for all x′ ∈ [x2]∼i . If i−2

ν
≥ τ(x′),

for all x′ ∈ [x2]∼i , then the same must hold for all x′ ∈ [x1]∼i , con-
tradicting the assumption. Hence, we can also assume that i−2

ν
<

τ(x′), for all x′ ∈ [x2]∼i . It follows that |∆X(x, i−1
ν

)|[x1]∼i
| ≤ 1

κ
and

|∆X(x, i−1
ν

)|[x2]∼i
| > 1

κ
, but this contradicts the martingale property

(†††) for X. Hence, this case can’t happen, so (†††) and (ii) is shown.
Property (iii) follows from the fact that W 1 ∈ SL2(Ωη), (††††), which
we show below, and the inequality;

Eη(|W νt
ν
|) ≤ Eη(W

2
νt
ν

)
1
2 ≤ Eη(W

2

1)
1
2 .
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which uses Cauchy-Schwartz, and the martingale property (ii). By
construction W has infinitesimal increments. As we are only modifying
X inside Vκ × Tν , where L(µη)(Vκ) = 0 it is clear that S-continuity is
preserved. Similarly, we must have that ◦(W t) = X◦t, for t ∈ Tν , a.e
L(µη). It remains to show (††††). By the above remark on modifi-

cation, it is sufficient to show that
∫
Vκ
W

2

1dµη ' 0. We can define a

relation on Ωη by x ∼ x′ if x′ ∈ [x]τ(x)−1. If x ∼ x′, then, by the above
discussion, τ(x) = τ(x′), and so ∼ defines an equivalence relation. We
clearly have that Vκ =

⋃
1≤j≤r[xj]∼ is an internal union of such equiv-

alence classes. A simple calculation gives that;∫
Vκ
W

2

1dµη = ∗∑
1≤j≤r

∫
[xj ]∼

W
2

1dµη

= ∗∑
1≤j≤r

∫
[xj ]τ(xj)−1

X
2

τ(xj)−1dµη

≤ ∗
∑

1≤j≤r
∫

[xj ]τ(xj)−1
X

2

1dµη

=
∫
Vκ
X

2

1dµη ' 0

where we have used the definition of W , and the calculation of The-
orem 12(ii) in [2]. This gives the result.

�

Lemma 0.10. Let X be a tame martingale, and let X be as in Lemma
0.9. Then we can find κ ∈ ∗N \N such that κ|ν, and for all t ∈ Tν;∫

Ωη
(X

2

t+ 1
κ
−X2

t )dµη ≤ C+1
κ

where C ∈ R≥0 is as given in footnote 3. Moreover, we can find
D ⊂ Ωη, with µη(D) ' 1, E ⊂ Tν with µη(E) ' 0, such that for all
t ∈ Tν \ E;

1Dκ([X]t+ 1
κ
− [X]t) ∈ SL1(Ωη, µη)

Proof. Without loss of generality we can assume that n|ν, for all n ∈ N .
If t ∈ Tν and n ∈ N , we have that {X t, X t+ 1

n
} ⊂ SL2(Ωη, µη), hence

(X
2

t+ 1
n
−X2

t ) ∈ SL1(Ωη, µη). We, therefore, have that;

◦(
∫

Ωη
(X

2

t+ 1
n
−X2

t )dµη)
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=
∫

Ωη
(◦(X t+ 1

n
)2 − ◦(X t)

2)dL(µη)

=
∫

Ωη
(X2
◦t+ 1

n

−X2
◦t)dL(µη) ≤ C

n

It follows that;∫
Ωη

(X
2

t+ 1
n
−X2

t )dµη ≤ C+1
n

As this holds for all n ∈ N , and the property is internal, we can find
an infinite κ|ν, such that;∫

Ωη
(X

2

t+ 1
κ
−X2

t )dµη ≤ C+1
κ

for all t ∈ Tν , as required, for the first part.

For the second condition, using Proposition 4.4.12 in [1], we can as-
sume that there exists C ⊂ Ωη, with L(µη)(C) = 1, such that [X] lifts
the standard process [X] on C × Tν . For ease of notation, for m ∈ N
and t ∈ Tν , let [X]t,m denote the increment m([X]t+ 1

m
−[X]t) and [X]t,m

the corresponding standard increment, for t ∈ [0, 1]. We clearly have
that ◦[X]t,m = [X]◦t,m on C×Tν . Choose a sequence of {Cm : m ∈ N},
with Cm ⊂ C, such that each Cm ∈ Cη and µη(Cm) = 1 − 1

m
. As Cm

is internal and [X] lifts X on Cm × Tν , by compactness, we must have
that [X] is bounded on Cm×Tν , |[X]| ≤ D(m), where D(m) ∈ R. Let
V ⊂ [0, 1] be the set on which the incremental condition (vii) in Def-
inition 3 does not hold. Then L(λν)(st

−1(V )) = 0, and we can choose
Em ∈ Cν , with λν(Em) = 1

m
, such that Em ⊃ st−1(V ). Then, we have

that, for all t ∈ Tν \ Em, for all K ≤ 2D(m)m, that;

◦ ∫
[X]t,m>K

1Cm [X]t,mdµη

= ◦ ∫
Ωη

1([X]t,m>K)∩Cm [X]t,mdµη

=
∫

Ωη
1([X]t,m>K)∩Cm [X]◦t,mdLµη

It follows that;∫
[X]t,m>K

1Cm [X]t,mdµη

<
∫

[X]◦t,m>K−1
1Cm [X]◦t,mdL(µη) + 1

m
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<
∫

[X]◦t,m|>K−1
[X]◦t,mdL(µη) + 1

m

= f ∗(K − 1) + 1
m

where we have used condition (vii) in the definition from footnote 3.
The condition (∗) holds trivially when K > 2D(m)m, as then;∫

[X]t,m>K
1Cm [X]t,mdµη = 0

It follows that;

∗R |= (∀t ∈ Tν \ Em)(∀K, )∫
[X]t,m>K

1Cm [X]t,mdµη < f ∗(K − 1) + 1
m

for all sufficiently large m ∈ N . By overflow, we can satisfy the con-
dition for the same infinite κ ∈ ∗N as above. In particular, we obtain,
for infinite K, t ∈ Tν \ Eκ that;∫

[X]t,κ>K
1Cκ [X]t,κdµη < f ∗(K − 1) + 1

κ
' 0

It follows, using the criterion in Lemma 3.19 of [5], that 1Cκ [X]t,κ ∈
SL1(Ωη, µη), for all t ∈ Tν \ Eκ as required. Letting D = Cκ E = Eκ
and noting that µη(D) = 1− 1

κ
' 1, µη(E) = 1

κ
' 0 we obtain the result.

�

Definition 0.11. Let X be as in Definition 0.7, with Eη(X0) = 0, and
let {cj(t, x) : 1 ≤ j ≤ ν} be given as in Lemma 0.8. Then we define;

H : Tν×Ωη → ∗C, Z : Ωη → ∗C, Y : Tκ×Ωη → ∗C, W : Tκ×Ωη → ∗C,
{dj(t, x) : 1 ≤ j ≤ ν}, S : Tν × Ωη → ∗C, Q : Ωη → ∗C by;

H(t, x) =
√
νc[νt]+1(s, x)

where s ≥ [νt]+1
ν

, for 0 ≤ t < 1 and;

H(t, x) = 0, for t = 1

Z(x) = ∗∑
0≤j≤ν−1(X j+1

ν
(x)−X j

ν
(x))2
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Y (t, x) = 0, for 0 ≤ [νt] < ν
κ
− 1

Y (t, x) = k
ν
(H

2
[νt]
ν

+H
2
[νt]−1
ν

+ . . .+H
2
[νt]− νκ+1

ν

), for ν
κ
− 1 ≤ [νt] ≤ 1

W =
√
Y

dj(s, x) = 1√
ν
W j−1

ν
(x), for 1 ≤ j ≤ ν, and j

ν
≤ s ≤ 1.

S(t, x) = ∗∑[νt]
j=1dj(1, x)ωj

Q(x) = ∗∑
0≤j≤ν−1(S j+1

ν
(x)− S j

ν
(x))2

Lemma 0.12. If X is as in Lemma 0.9, and X is tame, then Y ∈
SL1(Tν × Ωη, λν × µη), Z ∈ SL1(Ωη, µη) and S is a nonstandard mar-
tingale, with S1 ∈ SL2(Ωη, µη).

Proof. The fact that Z ∈ SL1(Ωη, µη), (†), follows from Proposition
4.4.3 of [1] and the properties of X. This does not require that X is
S-continuous or has infinitesimal increments.

For the last claim, it is easily seen that the functions dj : [ j
ν
, 1]×Ωη →

∗C are Dν × Cj−1
η -measurable, for 1 ≤ j ≤ ν. Hence, using Lemma 0.8,

we have that S satisfies conditions (i) and (ii) of Definition 0.7. By
Proposition 4.4.3 of [1], it is sufficient to show that Q ∈ SL1(Ωη, µη),
as S0 = 0. (explain why we can assume this?) We compute;

Q(x) = ∗∑
0≤j≤ν−1(S j+1

ν
(x)− S j

ν
(x))2

= ∗∑
1≤j≤ν−1d

2
j(1, x)

= 1
ν
∗∑

1≤j≤ν−1W
2
j−1
ν

(x)

= 1
ν
∗∑

1≤j≤ν−1Y j−1
ν

(x)

= 1
ν
∗∑

ν
κ
−1≤j≤ν−2

k
ν
(H

2
j
ν

+H
2
j−1
ν

+ . . .+H
2
j− νκ+1

ν

)

= 1
ν
∗∑

0≤j≤ν−1H
2
j
ν
dµη + r(x)

= ∗∑
1≤j≤νc

2
j(1, x)dµη + r(x)



16 TRISTRAM DE PIRO

= ∗∑
0≤j≤ν−1(X j+1

ν
(x)−X j

ν
(x))2 + r(x)

= Z(x) + r(x)

where r(x) ≥ 0 is a remainder term. We have that Eη(r(x)) ' 0, and
r(x) ≤ Z(x). It follows, easily, that r(x) ' 0, a.e L(µη), Q(x) ' Z(x)
a.e L(µη), and Q(x) ∈ SL2(Ωη, µη) as required.

For the first part, observe first that H is progressively measurable,

that is H t is measurable with respect to C[νt]
η , hence, so is Y .

By Lemma 3.19 of [5], it is sufficient to prove that;∫
Y >K

Y d(λν × µη) ' 0, for K infinite

As Y is progressively measurable, the set Y > K is progressively
measurable. Moreover, it has infinitesimal measure. This clearly fol-
lows from showing that;∫

Tν×Ωη
Y dλνdµη is finite, (∗)

To see (∗), we compute;∫
Tν×Ωη

Y (t, x)dλνdµη

= 1
ν
∗∑

0≤j≤ν−1

∫
Ωη
Y ( j

ν
, x)dµη

= 1
ν
∗∑

ν
k
−1≤j≤ν−1

∫
Ωη
Y ( j

ν
, x)dµη

= 1
ν
∗∑

ν
k
−1≤j≤ν−1

∫
Ωη

(k
ν
(H

2
j
ν

+H
2
j−1
ν

+ . . .+H
2
j− νκ+1

ν

))dµη

≤ 1
ν
∗∑

0≤j≤ν
∫

Ωη
H

2
j
ν
dµη

= 1
ν
∗∑

0≤j≤ν−1

∫
Ωη
ν|cj(1, x)|2dµη (††)

= ∗∑
0≤j≤ν−1

∫
Ωη
|cj(1, x)|2dµη

=
∫

Ωη
|X1|2dµη (†††)

where, in (††), we have used Definition 0.11, and, in (†††), we have
used the fact that X1 = ∗∑

0≤j≤ν−1cj(1, x)ωj, by Lemma 0.8, and the
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orthogonality observation (∗) there. Hence, (∗) is shown, by the as-
sumption that X1 ∈ SL2(Ωη, µη). Therefore, it is sufficient to prove
that;∫

A
Y d(λν × µη) ' 0, for a progressively measurable set A with

λν × µη(A) ' 0. (∗∗)

We now verify (∗∗);

Case 1. Let A ⊂ Ωη, with µη(A) ' 0, then;∫
A×T η Y dµηdλν

= 1
ν
∗∑

0≤j≤ν−1

∫
A
Y dµη

≤ 1
ν
∗∑

0≤j≤ν−1

∫
A
H

2
j
ν
dµη (as above)

=
∫
A
∗∑

0≤j≤ν−1cj(1, x)2dµη

=
∫
A
∗∑

0≤j≤ν−1(X j+1
ν
−X j

ν
)2dµη =

∫
A
Z ' 0

by (†).

Case 2. Let B ⊂ T ν , with B ∈ Dν and λν(B) ' 0. We can write

B =
⋃

1≤j≤s Ij, where Ij is an interval of the form [
ij
ν
,
ij+1

ν
), for some

0 ≤ ij ≤ ν − 1, and s
ν
' 0. We compute, for ij ≥ ν

κ
− 1;∫

Ωη×Ij Y (t, x)dλνdµη

= 1
ν

∫
Ωη

(k
ν
(H

2
ij
ν

+H
2
ij−1

ν
+ . . .+H

2
ij−

ν
κ+1

ν

))dµη

= k
ν

∫
Ωη

(c2
ij+1 + . . . c2

ij− νκ+2)dµη

We have that;

X(t, x) =
∑

0≤j≤tν cj(1, x)ωj(x)

X(t, x)2 =
∑

0≤j,k≤tν cj(1, x)ck(1, x)ωj(x)ωk(x) (])

Then;
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Ωη

(X t)
2(x)dµη

=
∑

0≤j,k≤[tν]

∫
Ωη
cj(1, x)ck(1, x)ωjωkdµη (using (]))

=
∑

0≤j≤[tν]

∫
Ωη
c2
j(1, x)dµη (using Lemma 0.8) (]])

It follows that;∫
Ωη

(c2
ij+1 + . . . c2

ij− νκ+2)dµη

=
∫

Ωη
(X

2
ij+1

ν
−X2

ij+1− νκ
ν

)dµη

and, therefore, that;∫
Ωη×Ij Y (t, x)dλνdµη

κ
ν

∫
Ωη

(X
2
ij+1

ν
−X2

ij+1

ν
− 1
κ
)dµη ≤ C+1

ν

using Lemma 0.10. We then have that;∫
Ωη×B Y (t, x)dλνdµη

= ∗∑
1≤j≤s

∫
Ωη×Ij Y (t, x)dλνdµη ≤ s(C+1)

ν
' 0

as required.

Case 3. Let B ∈ Dν × Cη, with (λν × µη)(B) = δ ' 0. Let;

I = {i : 0 ≤ i ≤ ν, µη(prη(B ∩ pr−1
ν ( i

ν
))) > δ

1
2}

Let C =
⋃
i∈I [

i
ν
, i+1
ν

), so C ∈ Dν , and let B1 = B ∩ pr−1
ν (C). As

B1 ⊂ B, and by construction of C, we have that;

δ ≥ (λν × µη)(B1) > δ
1
2λν(C)

It follows that λν(C) < δ
1
2 ' 0. By Case 2, we have that;∫

B1
Y d(λν × µη)

≤
∫

Ωη×C Y d(λν × µη) ' 0
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Let B2 = B ∩Bc
1, then B2 ∈ Dν × Cη and (λν × µη)(B2) ' 0, and to

show Case 3, it is sufficient to prove that;∫
B2
Y d(λν × µη) ' 0

We say that B ∈ Dν × Cη is wide, if there exists ε ' 0, with
µη(prη(B ∩ pr−1

ν (t))) ≤ ε, for t ∈ Tν , and note that B2 is wide. We are
thus reduced to;

Case 4. Suppose B is progressively measurable and wide, and let;

Ij = {i ∈ ∗N : 0 ≤ i ≤ ν − 1, rem(2, i) = j, B ∩ pr−1
ν ( i

ν
) 6= ∅}, for

0 ≤ j ≤ 1

Sj =
⋃
i∈Ij [

i
ν
, i+1
ν

), 0 ≤ j ≤ 1

Bj = B ∩ pr−1
ν (Sj), 0 ≤ j ≤ 1

Then B =
⋃

0≤j≤1Bj, and each Bj is progressively measurable and
wide. Let;

Vj = {(i, s) ∈ ∗N 2 : 1 ≤ i ≤ ν − 1, 0 ≤ s < 2i, rem(2, s) =
j, B ∩ pr−1

ν ( i
ν
) 6= ∅, B ∩ pr−1

η ( s
η
) 6= ∅}, for 0 ≤ j ≤ 1

Wj =
⋃

(i,s)∈Vj [
i
ν
, i+1
ν

)× [ s
2i
, s+1

2i
), 0 ≤ j ≤ 1

By the progressive measurability of B, B =
⋃

0≤j≤1Wj and each Wj

is progressively measurable and wide. Let Bij = Bi ∩Wj, 0 ≤ i ≤ 1,
0 ≤ j ≤ 1. Then B =

⋃
0≤i,j≤1Bij and each Bij is progressively mea-

surable and wide. We say that B ∈ Dν × Cη is separated if, for all

(t, x) ∈ B, (t + 1
ν
) /∈ prν(B), and (t, [x2[tν]]+1

2[tν]
) /∈ B, for [νt] ≥ 1 and

0 ≤ [[x2[tν]] ≤ 2[tν] − 2. . By construction, each Bij is separated, for
0 ≤ i, j ≤ 1. We are thus reduced to;

Case 5. Suppose B is progressively measurable, wide and separated.

Observe that;

κ([X]t − [X]t− 1
κ
)
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= κ(
∑[νt]−1

j=0 (X j+1
ν
−X j

ν
)2 −

∑[ν(t− 1
κ

)]−1

j=0 (X j+1
ν
−X j

ν
)2)

= κ(
∑[νt]−1

j=[νt]− ν
κ
(cj+1)2)

= κ
ν
(
∑[νt]−1

j=[νt]− ν
κ
(H j

ν
)2)

= Y t− 1
ν

It follows from Lemma 0.10, that there exists E ′ with µη(E
′) = 0,

such that 1DY t ∈ SL1(Ωη, µη), (††) for all t ∈ Tν \ E ′. We now com-
pute;∫

B
Y d(λν × µη)

≤
∫
B∩(Dc×Tν)

Y d(λν × µη) +
∫
B∩(Ωη×E′) Y d(λν × µη)

+
∫
B∩(D×Tν\E′) Y d(λν × µη)

'
∫
B∩(D×Tν\E′) Y d(λν × µη) (by Cases 1,2)

=
∫
Tν\E′

∫
Ωη

1DY tdµηdλν

=
∫
Tν\E′ g(t)dλν (where g ' 0 on Tν \ E ′)

' 0

where we have used the assumption (††) and the fact that B is wide
in the penultimate line. It follows that Y ∈ SL1(Ωη × Tν) as required.

�

Theorem 0.13. Any tame martingale X is representable as a stochas-
tic integral;

X(t, x) =
∫ t

0
F (s, x)dβs

where F : [0, 1] × Ωη → R ∈ L2([0, 1] × Ωη, L(µη)), and βs is a
Brownian motion.

Proof. By Lemma 0.9, there exists a nonstandard martingale X, with
◦(X t) = X◦t, for t ∈ T ν , a.e L(µη). Let notation be as in Definition
0.11. Then by Lemma 0.12, we have shown that Y ∈ SL1(Tν × Ωη).
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We have that S =
∫
Wdχ, , where χ is Anderson’s random walk, and,

therefore, the quadratic variation;

[S] = Q =
∫
W

2
dt.

We claim that;

◦[S](x, t) =
∫ t

0
f(x, s)ds a.e dL(µη) (∗)

where f ∈ L1(Ωη × [0, 1]). To see this, we first claim that W
2

x ∈
SL1(Tν) a.e dL(µη), (∗∗). Suppose not, then, using Theorem 9 of [2],
there exists A with L(µη)(A) > 0, such that;

◦ ∫ 1

0
W

2

xdλν >
∫ 1

0
◦W

2

xdL(λν).

But then;

◦ ∫
A

∫ 1

0
W

2
dλνdµη

≥
∫
A
◦ ∫ 1

0
W

2
dλνdL(µη)

>
∫
A

∫ 1

0
◦W

2
dL(λν)dL(µη)

contradicting the fact that W ∈ SL2(Tν ×Ωη, λν × µη). Hence, (∗∗)
is shown. Let Vx(t) =

∫ t
0
W

2

xdλν , for t ∈ [0, 1]. By (∗∗), we have that;

◦Vx(t) =
∫ t

0
◦W

2

xdL(λν)

We claim that ◦Vx is absolutely continuous, (∗ ∗ ∗). Suppose not,
then there exist internal Bn ⊂ Tν , with each Bn a finite union of in-
tervals with real endpoints, such that λ(Bn ∩ [0, 1]) < 1

n
, where λ is

Lebesgue measure, and ε ∈ R>0, such that;∫
Bn
◦W

2

xdL(λν) > ε

Then ◦
∫
Bn
W

2

xdλν ≥
∫
Bn
◦W

2

xdL(λν > ε

and λν(Bn) ' λ(Bn ∩ [0, 1]) < 1
n

as each Bn is a finite union of intervals. We can extend the sequence
(Bn)n∈N to an internal sequence indexed by ∗N . By overflow, we can
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find an infinite ρ ∈ ∗N \N , with Bρ ∈ Dν , such that λν(Bρ) <
1
ρ
' 0

and;∫
Bρ
W

2

xdλν > ε

This contradicts (∗∗). Hence, (∗ ∗ ∗) is shown. By real analysis, see
[6] Theorem 7.18, the derivative fx = (◦Vx)

′ exists a.e dλ, fx ∈ L1([0, 1])
and;

◦[S](x, t) =
∫ t

0
f(x, s)ds a.e dL(µη)

We compute;∫
Ωη

∫ 1

0
f(x, s)ds

=
∫

Ωη

∫
T ν
◦W

2
dL(λν)dL(µη)

= ◦ ∫
Ωη

∫
T ν W

2
dλνdµη

which is finite, as W ∈ SL2(Tν × Ωη, λν × µη), hence f ∈ L1(Ωη ×
[0, 1]), thus (∗) is shown.

We have that;

[S]t ' [X]t = Zt a.edL(µη

This follows by computing the remainder term r(x) in the proof of
Lemma 0.12 and using the fact that Z is S-continuous. This last is
a consequence of the fact that X is S-continuous and X1 ∈ SL2(Ωη),
using Theorem 4.2.16 of [1]. Hence, we have;

◦[X](x, t) =
∫ t

0
f(x, s)ds a.e dL(µη) (∗ ∗ ∗∗)

Define a new adapted process g by;

g(x, t) = f
−1
2 (x, t) if f(x, t) 6= 0, and g(x, t) = 0 otherwise.

Let 1g be the characteristic function of the set {(x, t) : g(x, t) = 0}.
We have that;



A SIMPLE PROOF OF A MARTINGALE REPRESENTATION THEOREM USING NONSTANDARD ANALYSIS23

E(
∫ 1

0
g(x, s)2d◦[X]) = E(

∫ 1

0
g(x, s)2f(x, s)ds) ≤ 1

hence, g ∈ L2(ν◦[X]). Let G ∈ SL2(X) be a 2-lifting of g, and 1G a
2-lifting of 1g. We can assume that G.1G = 0. Define;

β(x, t) = ◦(
∫ t

0
G(x, s)dX(x, s) +

∫ t
0

1G(x, s)dχ(x, s))

Since, G and 1G have disjoint supports;

[β](x, t) = ◦[
∫
GdX](x, t) + ◦[

∫
1Gdχ](x, t)

= ◦(
∫
G2dX)(x, t) + ◦[

∫
1Gdt](x, t)

=
∫ t

0
g2fds+

∫ t
0

12
gds =

∫ t
0

1ds = t

It follows, using Proposition 4.4.13 and 4.4.18 of [1], this requires that
X has infinitesimal increments, that β is a Brownian motion, adapted
to the filtration (Ωη,Dt, L(µη). We have that f

1
2 ∈ L2(νβ) and;∫

f
1
2dβ =

∫
f

1
2 gd◦X +

∫
f

1
2 1gd

◦χ =
∫
f

1
2 gd◦X

since f
1
2 1g = 0. It remains to show that ◦X =

∫
f

1
2 gd◦X, since, we

then get the result by setting F = f
1
2 . Using Doob’s inequality;

E(supq≤1,q∈Q(◦X(q)−
∫ q

0
f

1
2 gd◦X)2)

≤ 4E((◦X(1)−
∫ 1

0
f

1
2 gd◦X)2)

= 4E(
∫ 1

0
(1− f 1

2 g)2d◦X)

= 4E(
∫ 1

0
(1− f 1

2 g)2dt) = 0

as f
1
2 g = 1, whenever f 6= 0.

�
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