
SOLVING THE HEAT EQUATION USING
NONSTANDARD ANALYSIS

TRISTRAM DE PIRO

Abstract. We use the nonstandard Fourier transform method,
see [6], along with an established nonstandard approach to ODE’s,
see [2] and [7], to find a solution to the heat equation, on (0,∞)×R,
with a given boundary condition g at t = 0. We use this result to
find an algorithm, converging to a solution of this equation, with
applications to derivatives pricing in finance.

We adopt the following notation;

Definition 0.1. For η ∈ ∗N \N , we let (Rη,Cη, λη) be as in Defini-
tion 0.15 of [6].

We let (Rη, L(Cη), L(λη)) denote the associated Loeb space, see Def-
inition 0.5 of [6].

(R,B, µ), (R+−∞,B′, µ′) are as in Lemma 0.6 of [6].

Tη = {τ ∈ ∗R≥0 : 0 ≤ τ < η} and we again denote by Cη, the re-
striction of Cη to Tη, and λη the restriction of the counting measure.

(Tη, L(Cη), L(λη)) is the corresponding Loeb space.

T = R≥0 and (T ,B, µ), (T +∞,B′, µ′) are defined analogously to
Lemma 0.6 of [6].

(Tη ×Rη,C
2
η, λ

2
η) is as in Definition 0.15 of [6].

(Tη ×Rη, L(C
2
η), L(λ

2
η)) is the corresponding Loeb space.

(Tη × Rη, L(Cη) × L(Cη), L(λη) × L(λη)) is the complete product of
the Loeb spaces (Tη, L(Cη), L(λη)) and (Rη, L(Cη), L(λη)).

1



2 TRISTRAM DE PIRO

Similarly, (T +∞×R+−∞,B′×B′, µ′×µ′) and (T ×R,B×B, µ×µ)
are the complete products of (T +∞,B′, µ′), (R+−∞,B′, µ′) and (T ,B, µ),
(R,B, µ) respectively.

We let (∗R, ∗D) denote the hyperreals, with the transfer of the Borel
field D on R. A function f : (Rη,Cη) → (∗R, ∗D) is measurable, if
f−1 : ∗D → Cη. Similarly, f : (Tη ×Rη,C

2
η) → (∗R, ∗D) is measurable,

if f−1 : ∗D → C2
η. Observe that this is equivalent to the definition

given in [4]. We will abbreviate this notation to f : Rη → ∗R or
f : Tη×Rη → ∗R is measurable, (∗). The same applies to (∗C, ∗D), the
hyper complex numbers, with the transfer of the Borel field D, generated
by the complex topology. Observe that f : Rη → ∗C or f : Tη×Rη → ∗C
is measurable, in this sense, iff Re(f) and Im(f) are measurable in the
sense of (∗).

We have the following lemma, generalising Theorem 0.7 of [6] and
Theorem 22 of [1];

Lemma 0.2. The identity;

i : (Tη×Rη, L(C
2
η), L(λ

2
η)) → (Tη×Rη, L(Cη)×L(Cη), L(λη)×L(λη))

and the standard part mapping;

st : (Tη ×Rη, L(Cη)× L(Cη), L(λη)× L(λη))

→ (T +∞ ×R+−∞,B′ ×B′, µ′ × µ′)

are measurable and measure preserving.

Proof. To show that i is measurable and measure preserving, it is suf-
ficient to prove that;

(i). L(Cη)× L(Cη) ⊂ L(C2
η).

(ii). L(λ2η)|L(Cη)×L(Cη) = L(λη)× L(λη).

As in [1], if A ∈ Cη;

{M ∈ σ(Cη) :M × A ∈ σ(Cη × Cη)}
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is a σ-algebra, containing Cη, hence, it equals σ(Cη). Similarly, if
B ∈ σ(Cη);

{M ∈ σ(Cη) : B ×M ∈ σ(Cη × Cη)}

is a σ-algebra, and equals σ(Cη). Therefore;

Cη × Cη ⊂ σ(Cη)× σ(Cη) = σ(Cη × Cη)

Now, using Ward Henson’s result, see footnote 1 of [6], it follows
that L(λ2η) = L(λη)× L(λη) on σ(Cη)× σ(Cη), (∗). Now, suppose that
{C,D} ⊂ L(Cη) then, there exists {C1, C2, D1, D2} ⊂ σ(Cη), with C1 ⊂
C ⊂ C2, D1 ⊂ D ⊂ D2, L(λη)(C2 \ C1) = 0, L(λη)(D2 \D1) = 0, (∗∗),
and C1 ×D1 ⊂ C ×D ⊂ C2 ×D2. Moreover, (C2 ×D2 \ C1 ×D1) ⊂
((C2 \ C1) × D2) ∪ (C2 × (D2 \D1)), (∗ ∗ ∗). By (∗), (∗∗), (∗ ∗ ∗),
L(λ2η)(C2 ×D2 \ C1 ×D1) = 0. Therefore, C × D ∈ L(C2

η), and the

product σ-algebra L(Cη) × L(Cη) ⊂ L(C2
η), (†). Using (∗), (†), L(λ2η)

agrees with L(λη)×L(λη) on this algebra, hence, the complete product
L(Cη) × L(Cη) ⊂ L(C2

η), showing (i), and L(λ2η)|L(Cη)×L(Cη) = L(λη) ×
L(λη), by the definition of a completion, showing (ii).

We recall the result, Theorem 0.7, of [6], that;

st : (Rη, L(Cη), L(λη)) → (R+−∞,B′, µ′)

is measurable and measure preserving, (♯). Similarly, one can show
that;

st : (Tη, L(Cη), L(λη)) → (T +∞,B′, µ′)

is measurable and measure preserving, (♯♯). The rest of the argu-
ment is fairly straightforward, if {B1, B2} ⊂ B′, then, using (♯), (♯♯),
st−1(B1 × B2) ∈ L(Cη)× L(Cη), and L(Cη)× L(Cη)(st

−1(B1 × B2)) =
µ′ × µ′(B1 × B2). It follows, using the usual argument, as in the first
part of the proof, that the push forward measure st∗(L(Cη) × L(Cη))
agrees with µ′×µ′ onB′×B′, considered as a product σ-algebra. Then,
the result follows easily from the definition of a complete product.

�

The following definition is based on Definition 0.18 of [6];
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Definition 0.3. Discrete Partial Derivatives

Let f : Tη × Rη → ∗C be measurable. Then we define ∂f
∂t

to be the
unique measurable function satisfying;

∂f
∂t
( j
η
, x) = η(f( j+1

η
, x)− f( j

η
, x)) for j ∈ ∗N 0≤j≤η2−2, x ∈ Rη

∂f
∂t
(η

2−1
η
, x) = 0

∂f
∂x
(t, j

η
) = η(f(t, j+1

η
)− f(t, j

η
)) for j ∈ ∗N−η2≤j≤η2−2, t ∈ Tη

∂f
∂x
(t, η

2−1
η

) = 0

Remarks 0.4. If f is measurable, then so are ∂f
∂t
, ∂f
∂x

and ∂2f
∂x2

. This
follows immediately, by transfer, from the corresponding result for the
discrete derivatives of discrete functions f : Tn×Rn → C, where n ∈ N ,
see Definition 0.15 and Definition 0.18 of [6].

Lemma 0.5. Given a measurable boundary condition g : Rη → ∗C,
there exists a unique measurable f : Tη ×Rη → ∗C, satisfying the non-
standard heat equation;

∂f
∂t

− ∂2f
∂x2

= 0 on (Tη \ [η
2−1
η
, η))×Rη

with f(0, x) = g(x), for x ∈ Rη, (∗).

Proof. Observe that, by Definition 0.3, if f : Tη ×Rη → ∗C is measur-
able, then;

∂2f
∂x2

(t, j
η
) = η2(f(t, j+2

η
)− 2f(t, j+1

η
) + f(t, j

η
)), (−η2 ≤ j ≤ η2 − 3).

∂2f
∂x2

(t, η
2−2
η

) = −η2(f(t, η2−1
η

)− f(t, η
2−2
η

))

∂2f
∂x2

(t, η
2−1
η

) = 0

Therefore, if f satisfies (∗), we must have;

f( i+1
η
, j
η
) = f( i

η
, j
η
) + η(f( i

η
, j+2

η
)− 2f( i

η
, j+1

η
) + f( i

η
, j
η
)),

(0 ≤ i ≤ η2 − 2,−η2 ≤ j ≤ η2 − 3).
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f( i+1
η
, η

2−2
η

) = f( i
η
, η

2−2
η

)− η(f( i
η
, η

2−1
η

)− f( i
η
, η

2−2
η

)),

(0 ≤ i ≤ η2 − 2).

f( i+1
η
, η

2−1
η

) = f( i
η
, η

2−1
η

), (0 ≤ i ≤ η2 − 2).

f(0, j
η
) = g( j

η
), (−η2 ≤ j ≤ η2 − 1). (∗∗)

If η = n ∈ N , then given any measurable g : Rn → C, the condition
(∗∗), clearly determines a unique measurable, see Definition 0.15 of [6],
f : Tn × Rn → C, satisfying (∗). As the condition (∗) can be written
down uniformly, in Robinson’s higher order logic, we obtain the result,
immediately, by transfer.

�

Definition 0.6. We recall the definition from [6], Definition 0.15.
Given a measurable f : Tη × Rη → ∗C, we define expη(−πixy) and
exp(πixy) to be the C2

η measurable counterparts of the transfers of

exp(πixy) and exp(−πixy) to Rη
2
. We define the nonstandard Fourier

transform in space;

f̂(t, y) =
∫
Rη
f(t, x)expη(−πixy)dλη(x)

and the nonstandard inverse Fourier transform in space;

f̌(t, y) =
∫
Rη
f(t, x)expη(πixy)dλη(x)

As in Definition 0.20 of [6], we let ϕη, ψη : Rη → ∗C be defined by;

ϕη(x) = η(expη(−πixη )− 1)

ψη(x) = η(expη(πi
x
η
)− 1)

If f is measurable, we let;

Cη(t, x) = f(t, η
2−1
η

)expη(−πiη
2−1
η
x)− f(t,−η)expη(−πi(−η)x)

Dη(t, x) = − 1
η
f(t,−η)expη(πixη )expη(−πi(−η)x).

C ′
η(t, x) = −∂f

∂x
(t,−η)expη(−πi(−η)x)
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D′
η(t, x) = − 1

η
∂f
∂x
(t,−η)expη(πixη )expη(−πi(−η)x).

Eη(t, x) = ϕη(x)Dη(t, x)− Cη(t, x)

E ′
η(t, x) = ϕη(x)D

′
η(t, x)− C ′

η(t, x)

Fη(t, x) = ψη(x)ϕη(x)Dη(t, x)−ψη(x)Cη(t, x)+ϕη(x)D′
η(t, x)−C ′

η(t, x)

Remarks 0.7. If f is measurable, then so are f̂ and f̌ . Again this
follows, by transfer, from the finite case, as in Remark 0.4. By Lemma
0.16 of [6], if f is measurable, then, we have the nonstandard inversion
theorems;

ˇ̂
f = 2f

ˆ̌f = 2f

Lemma 0.8. If f : Tη ×Rη → ∗C is measurable, then;

(i). ∂̂f
∂t

= ∂f̂
∂t
.

(ii).
ˆ∂2f
∂x2

= ψ2
η f̂ − Fη.

Proof. (i). Using Definition 0.3 and Definition 0.6, we have:

∂̂f
∂t
(t′, y) =

∫
Rη

∂f
∂t
(t′, x)expη(−πixy)dλη(x)

= η(
∫
Rη
f(t′+ 1

η
, x)expη(−πixy)dλη(x)−

∫
Rη
f(t′, x)expη(−πixy)dλη(x)),

(0 ≤ t′ < η2−1
η

)

= η(f̂(t′ + 1
η
, y)− f̂(t′, y)) = ∂f̂

∂t
(t′, y), (0 ≤ t′ < η2−1

η
)

∂̂f
∂t
(t′, y) = ∂f̂

∂t
(t′, y) = 0, (η

2−1
η

≤ t′ < η)

(ii). Using the definition of ψη and Fη in Definition 0.6, and the
transfer of the result in Lemma 0.21 of [6].

�
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Theorem 0.9. Let f : Tη ×Rη → ∗C satisfy the conditions of Lemma

0.5. Then f̂ is determined by;

f̂( i
η
, x) = ĝ(x)(1 +

ψ2
η(x)

η
)i − 1

η
∗∑

0≤j≤i−1Fη(
j
η
, x)(1 +

ψ2
η(x)

η
)i−j−1,

(0 ≤ i ≤ η2 − 1), (∗)

In particular, if the boundary condition g satisfies;

g(η
2−1
η

) = 0

g(x) = 0, for −η ≤ x < −η + ω, where ω ∈ ∗N \N

then, f̂ is determined by;

f̂( i
η
, x) = ĝ(x)(1 +

ψ2
η(x)

η
)i, (0 ≤ i ≤ nη, n ∈ N )

Proof. We have that;

∂f
∂t

− ∂2f
∂x2

= 0 on (Tη \ [η
2−1
η
, η))×Rη

Applying the nonstandard Fourier transform, and using Lemma 0.8,
we have;

∂f̂
∂t

− (ψ2
η f̂ − Fη) = 0 on (Tη \ [η

2−1
η
, η))×Rη

Using Definition 0.3, we have;

η(f̂(k+1
η
, x)− f̂(k

η
, x)) = ψ2

η(x)f̂(
k
η
, x)− Fη(

k
η
, x)

f̂(k+1
η
, x) = f̂(k

η
, x)(1 +

ψ2
η(x)

η
)− 1

η
Fη(

k
η
, x), (0 ≤ k ≤ η2 − 2). (∗∗)

Let A = {i ∈ ∗N : 0 ≤ i ≤ η2 − 1, for which (*) holds}. Then A is

internal, A(0) holds, as f̂(0, x) = ĝ(x), by the boundary condition in
Lemma 0.5, and if A(i) holds, for 0 ≤ i ≤ η2 − 2, then, using (∗∗);

f̂( i+1
η
, x) = [ĝ(x)(1 +

ψ2
η(x)

η
)i

− 1
η
∗ ∑

0≤j≤i−1Fη(
j
η
, x)(1 +

ψ2
η(x)

η
)i−j−1](1 +

ψ2
η(x)

η
)− 1

η
Fη(

i
η
, x)
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= ĝ(x)(1 +
ψ2
η(x)

η
)i+1 − 1

η
∗ ∑

0≤j≤i−1Fη(
j
η
, x)(1 +

ψ2
η(x)

η
)i−j − 1

η
Fη(

i
η
, x)

= ĝ(x)(1 +
ψ2
η(x)

η
)i+1 − 1

η
∗ ∑

0≤j≤iFη(
j
η
, x)(1 +

ψ2
η(x)

η
)i−j

so A(i + 1) holds. It follows, by hyperfinite induction, see [7], that

A = {i ∈ ∗N : 0 ≤ i ≤ η2 − 1}, and f̂ is determined by the condition
(∗).

Now suppose that the boundary condition g satisfies the require-
ments in the second part of the Theorem, then, using Lemma 0.5, we
have;

f( i
η
, η

2−1
η

) = f(0, η
2−1
η

) = g(η
2−1
η

) = 0, (0 ≤ i ≤ η2 − 1)

Moreover, again by Lemma 0.5, f( i
η
, −η

2+1
η

) and f( i
η
,−η) are hyper-

finite linear combinations of the values g( j
η
), for −η2 ≤ j ≤ −η2+1+2i.

For such j, and 0 ≤ i ≤ nη, j
η
≤ −η + 1+2i

η
≤ −η + 1 + 2n < −η + ω,

so g( j
η
) = 0 by hypothesis, and, then, f( i

η
, −η

2+1
η

) = f( i
η
,−η) = 0, for

0 ≤ i ≤ nη. Checking the Definition 0.6, it follows that Fη(
i
η
, x) = 0,

for 0 ≤ i ≤ nη, n ∈ N . Then, using the first part of the Theorem, we
obtain the final result.

�

Definition 0.10. Convolution
Suppose that f, g : Tη ×Rη → ∗C are measurable. Then we define the
nonstandard convolution by;

(f ∗ g)(t, x) =
∫
Rη
f(t, [ηx]

η
− y)g(t, y)dνη(y)

Theorem 0.11. Nonstandard Convolution Theorem
Let hypotheses be as in 0.10, then;

ˆf ∗ g = f̂ ĝ ˇf ∗ g = f̌ ǧ

Proof. This is a straightforward computation. We have, for x ∈ Rη,
using Definition 0.15 of [6], that;

f̂ ĝ(t, x) = 1
η2
[∗
∑η2−1

j=−η2f(t,
j
η
)expη(−πi( jη )x)][

∗ ∑η2−1
k=−η2g(t,

k
η
)expη(−πi(kη )x)]
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= 1
η2

∗ ∑η2−1
j,k=−η2f(t,

j
η
)g(t, k

η
)expη(−πi( j+kη )x)

= 1
η2

∗ ∑η2−1
l,k=−η2f(t,

l−k
η
)g(t, k

η
)expη(−πi( lη )x) (l = j + k)

= 1
η
∗∑η2−1

l=−η2(
∫
Rη
f(t, l

η
− w)g(w)dνη(w))expη(−πi( lη )x)

= 1
η
∗∑η2−1

l=−η2(f ∗ g)(t, l
η
)expη(−πi( lη )x)

= ˆf ∗ g(t, x)

A similar calculation shows that ˇf ∗ g = f̌ ǧ

�

Definition 0.12. For ω′ ∈ ∗N \N , with ω′ < η, we let Fω′ : Tη×Rη →
∗R be the measurable function defined by;

Fω′(t, j
η
) = 1

2
, if −ω′η ≤ j ≤ ω′η

Fω′(t, j
η
) = 0, otherwise

and let Fη =
1
2
IdTη×Rη

Lemma 0.13. Let f satisfy the hypotheses of Theorem 0.9, with the
extra requirement on the boundary condition g, then, for finite t;

F̌ω′ ∗ f = (hFω′ )̌ ∗ g

where h is given by;

h(t, x) = (1 + 1
η
ψη(x)

2)[ηt]

Proof. By Theorem 0.9, for finite t, f̂ = hĝ, and so, f̂Fω′ = hFω′ ĝ. Let
a = (hFω′ )̌ and b = F̌ω′ , then, by Theorem 0.11 and Remark 0.7, ˆa ∗ g =
âĝ = 2hFω′ ĝ = 2Fω′ f̂ , and, similarly, ˆb ∗ f = b̂f̂ = 2Fω′ f̂ . Therefore,
ˆa ∗ g = ˆb ∗ f , and, again using Remark 0.7, we obtain b ∗ f = a ∗ g, as

required. �

Definition 0.14. We call Ψω′(t, x, y) = (hFω′ )̌(t, x−y) a nonstandard

heat kernel on Tη ×Rη
2
.
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Lemma 0.15. Let Ψ(t, x, y) be as in Definition 0.14. Then, for finite

(t, x, y) ∈ Tη ×Rη
2
, with ◦t ̸= 0, and ω′ ≤ log(η)

1
2 ;

◦Ψ(t, x, y) = 1√
4π◦t

exp(−(◦x−◦y)2

4◦t
)

Proof. We first claim that, for finite x ∈ Rη,
◦γη(x) = exp(−π2◦x2),

where γη(x) = (1 + 1
η
ψη(x)

2)η, (∗). For y ∈ R, let (sn)n∈N be the

standard sequence, defined by;

sn(y) =
exp(πi y

n
)−1

1
n

= y(
exp(πi y

n
)−1

y
n

), (y ̸= 0)

Then, for y ̸= 0;

limn→∞(sn(y)) = limh→0y(
exp(πih)−1

h
) = y d

ds
|s=0exp(πis) = πiy

and the sequence converges uniformly in y, on bounded intervals,
(1). Now, it is standard result,(2), that the sequence of functions
(rn(w))n∈N , defined by;

1 We estimate the rate of convergence of the sequence pn = n(exp(πi 1n )−1)−iπ.
We have;

pn =
∑

m≥2
(πi)m( 1

n )m−1

m! = −π2

n

∑
m≥0

(πi
n )m

(m+2)!

|pn| ≤ π2

n

∑
m≥0

(π
n )m

m! = π2

n exp(πn ) ≤
π2exp(π)

n

In particular, |pn| < ϵ, and, therefore, |sn(y) − iπy| < ϵ|y|, if n ≥ π2exp(π)
ϵ .

Hence, |sn(y)− iπy| < ϵ, if n ≥ π2exp(π)|y|
ϵ

2 We estimate the rate of convergence of the sequence qn(w) = rn(w)− exp(w),
for w ∈ C. We have, taking a branch of the logarithm with log(1) = 0, and cutting
the complex plane from −∞ to −1, for n > |w|;

log(rn(w))− w = nlog(1 + w
n )− w

|log(rn(w))− w| ≤
∑∞

m=1
|w|m+1

(m+1)nm ≤ |w|2
n

∑∞
m=0

|w|m
nm = |w|2

n
1

1− |w|
n

= |w|2
n−|w|

Moreover, observe that, for w ∈ C;

|exp(w)− 1| ≤
∑∞

m=1
|w|m
m! = |w|

∑∞
m=0

|w|m
(m+1)! ≤ |w|exp(|w|)

Therefore, for ϵ > 0, |exp(w) − 1| < ϵ, if |w| < min( ϵe , 1), and, for w′, w ∈ C,
with Re(w) ≤ 0, |exp(w′) − exp(w)| < ϵ if |exp(w′ − w) − 1| < ϵ ≤ ϵ|exp(−w)|.
Hence, |exp(w′)− exp(w)| < ϵ, if |w′ − w| < min( ϵe , 1), for Re(w) ≤ 0.
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rn(w) = (1 + w
n
)n

converges uniformly to exp(w) on bounded subsets of C. Therefore,
if (tn)n∈N is the sequence defined by tn = rn(s

2
n), then;

limn→∞tn = exp(−π2y2)

It follows that the sequence of functions tn(y) converges uniformly to
exp(−π2y2) on bounded intervals of R, (3) In particular, given N, ϵ > 0
standard the statement;

∀y ≤ N∃M∀n ≥M(|tn(y)− exp(−π2y2)| < ϵ)

is true in R, therefore, by transfer, is true in ∗R. As ϵ and N were
arbitrary, it follows that, for all finite x ∈ Rη;

γη(x) ≃ tη(x) ≃ ∗exp(−π2x2) ≃ exp(−π2◦x2)

using continuity of exp, and Theorem 2.25 of [7] or [5]. There-
fore, (∗) holds. Now, by continuity of the function q(w) = ws, for

s ∈ R, and the fact that η◦t−[ηt]
η

≃ 0, for finite t ∈ Rη, it follows,

again using [5] or Theorem 2.25 of [7], that, for finite (t, x) ∈ Tη ×Rη,
◦h(t, x) = exp(−π2◦t◦x2), (∗∗).

So, for Re(w) ≤ 0, if |w|2
n−|w| < min( ϵe , 1), that is n > |w| + |w|2max(1, e

ϵ ), then

|qn(w)| = |rn(w)− exp(w)| < ϵ.
3 We estimate the rate of convergence of the sequence bn(y) = tn(y) −

exp(−π2y2), for y ∈ R, y ̸= 0. It is a straightforward calculation, to show that,
if |sn(y) − iπy| < min(2|y|, ϵ

3|y| ), then |s2n(y) − (−π2y2)| < ϵ. Combining this

with the result of footnote 1, we obtain that if n > max(π
2exp(π)

2 , 3π2exp(π)y2

ϵ ), (∗),
then |s2n(y) − (−π2y2)| < ϵ. Using footnote 2, we also have that if ϵ < min( δe , 1),

then |exp(s2n(y)) − exp(−π2y2)| < δ, (∗∗). Now, assuming (∗) is satisfied, we

have |sn(y)| < (ϵ + π2y2)
1
2 . Then, using footnote 2, if ϵ < min( δe , 1,

π2y2

2 ),

(†), n > max((ϵ + π2y2)
1
2 + (ϵ + π2y2)max(1, e

δ ),max(π
2exp(π)

2 , 3π2exp(π)y2

ϵ )),

(††), then |exp(s2n(y)) − exp(−π2y2)| < δ, |rn(s2n(y)) − exp(s2n(y))| < δ, so
|bn(y)| = |tn(y) − exp(−π2y2) = |rn(s2n(y)) − exp(−π2y2)| < 2δ, (∗ ∗ ∗). Now,
if δ < min(e, π2y2e), we can satisfy (†) by taking ϵ = δ

2e . Substituting into (††), we
obtain, if n > max((1 + π2y2)

1
2 + (1 + π2y2) eδ ,

π2exp(π)
2 , 6π2exp(π)y2e

δ ), then (∗ ∗ ∗)
holds. Taking δ = 1

2|y|r , for r ∈ N , there exist constants C2, C3 > 0, such that, for

all y ∈ R, if n > max(C2, C3|y|r+2), then |bn(y)| < 1
|y|r .
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Now if ω′′ ∈ ∗R \R, with |ω′′| ≤ η
1
4 , then, in particular, η >

max(C2, C3|ω′′|3), see footnote 3. Hence, we have, by transfer, that;

|tη(ω′′)− ∗exp(−π2ω′′2)| < 1
|ω′′| ≃ 0

for infinite ω′′. As limx→∞exp(−π2x2) = 0, it is a standard result,
see [5], that ∗exp(−π2ω′′2) ≃ 0, hence |tη(ω′′)| ≃ 0, and ◦tη(ω

′′) = 0.
Now, by a similar argument to the above, for finite t, with ◦t ̸= 0, we
have h(t, ω′′) ≃ 0. Combining these results, we have that;

◦hFω′|st−1(T>0)×Rη
= st∗(exp(−π2tx2)∞) (♯)

for ω′ ∈ ∗N \N , with ω′ ≤ η
1
4 . Here, we adopt the notation in

Definition 0.5 of [6], letting exp(−π2tx2)∞ denote the extension of
exp(−π2tx2) on T>0×R to T +∞

>0 ×R+−∞, by setting exp(−π2tx2)∞ = 0,
at infinite values.

Now, for finite (t, x) ∈ Tη ×Rη, we have, by (∗∗), that;

|h(t, x)| ≤ 2∗exp(−π2tx2) (†)

For (t, x) ∈ Tη ×Rη, with t > 1 finite, and x infinite, with x ≤ η
1
5 ,

we have, using footnote 3, that;

|tη(x)|t < |tη(x)| ≤ |tη(x)| ≤ ∗exp(−π2x2) + 1
x2

≤ C
x2

(††)

where C ∈ R>0.

For (t, x) ∈ Tη × Rη, with
1
r
< ◦t ≤ 1, r ∈ N and x infinite, with

x ≤ η
1

2r+3 , we have, by footnote 3, that;

|tη(x)| ≤ ∗exp(−π2x2) + 1
x2r

≤ C′

x2r

|tη(x)|t < |tη(x)|
1
r ≤ C′′

x2
(†††)

where C ′, C ′′ ∈ R>0. Combining the estimates, (†), (††), (†††), and,
using the fact that h(x, t) is the measurable counterpart of tη(x)

t, we

have, for ω′ ≤ (log(η))
1
2 , and t finite, 0 < ◦t, that;

|(hFω′)t| ≤ ft,η
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Here, ft,η : Rη → Rη is the measurable counterpart of the ∗-continuous
function ft :

∗R → ∗R given by;

ft(x) = Ct if |x| ≤ 1

ft(x) =
Ct

x2
if |x| > 1

and Ct ∈ R>2, depends on t. Now, using the proof of Theorem 0.17
in [6], it follows that ft,η is S-integrable. Then, using [1], Corollary 5,
it follows that (hFω′)t(w) and (hFω′)t(w)expη(πiwz) are S-integrable,
dλη(w), for finite z ∈ Rη. Moreover, using [7], Theorem 3.24, and (♯),
we have, for finite (t, z) ∈ Tη ×Rη, with

◦t ̸= 0, that;

◦(hFω′ )̌(t, z) = ◦ ∫
Rη
hFω′(t, w)expη(πiwz)dλη(w)

= 1
2

∫
wfinite

◦hexpη(πiw(
◦z))dL(λη)(w)

= 1
2

∫
R exp(−π

2◦t◦w2)exp(πiw(◦z))dµ(w) (♯♯)

= 1√
4π◦t

exp(−(◦z)2

4◦t
), (4). Now substituting x− y for z, we obtain the

result.
�

Definition 0.16. Let g : R → C be a continuous function, satisfying
the growth condition;

4 Taking standard parts, the fact that;∫
R eiπwz−π2tw2

dw = 1√
πt
e

−z2

4t

is a standard result, which we include for want of a convenient reference. We

have iπwz − π2tw2 = −π2t(w − iz
2πt )

2 − z2

4t . Hence;∫
R eiπwz−π2tw2

dw

= e
−z2

4t

∫
R e−π2t(w− iz

2πt )
2

dw

= e
−z2

4t

∫
Im(w′)= −z

2πt
e−π2tw′2

dw′ (w′ = w − iw
2πt )

= e
−z2

4t

π
√
t

∫
Im(w′′)=−π

√
tz

2πt

e−w′′2
dw′′ (w′′ = π

√
tw′)

= 1√
πt
e

−z2

4t
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|g(x)| ≤ Aexp(B|x|ρ), (x ∈ R)

for some constants A,B and ρ < 2. Then the function H : T ×R →
C, defined by;

H(0, x) = g(x)

H(t, x) = 1√
4πt

∫
R exp(

−(x−y)2
4t

)g(y)dµ(y) (t > 0)

which is continuous, and satisfies the standard heat equation;

∂H
∂t

− ∂2H
∂x2

= 0

on T>0×R, (5), is known as the classical solution to the heat equation
with boundary condition g.

Theorem 0.17. Let g be as in Definition 0.16, let gη denote its mea-
surable extension to Rη, and, let gη,ω be the truncation of gη, given by;

gη,ω = gηχ[−ω,ω)

for a nonstandard step function χ[−ω,ω), with ω ∈ ∗N \N , η − ω

infinite and ω < ω
′1
2 . Then, with f determined by Lemma 0.5, for gη,ω

as the boundary condition, we have;

◦(F̌ω′ ∗ f)|st−1(T>0×R) = st∗(H∞)

if ω′ < log(η)
1
2 , and H∞ is obtained from the classical solution H of

the heat equation, with boundary condition g, given in Definition 0.16.

Proof. Using the following footnote 6, we obtain, by transfer and the
measurability observation at the end of Lemma 0.15, that, for any given
δ′, t ∈ ∗R>0, x ∈ ∗R;

|h(t, x)− expη(−π2tx2)| < δ′, (∗)

if η > C4(x, δ
′, t). In particular, observing that the function C4 :

∗R×∗R2
>0 is increasing in x and t, we have, for a given infinite ω′ ∈ ∗N ,

5 A good proof of this fact can be found in [8], (Theorem 2.1), if g ∈ S(R). For
the more general case, see [3]
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that (∗) holds for all |x| ≤ ω′, and finite t, if η > C4(ω
′, δ′, ω′),(6).

In particular, we obtain that;

|(hFω′ )̌(t, z)− θ̌(t, z)| ≤
∫
Rη

|hFω′(t, w)− θ(t, w)|dλ(w)

≤ 2 � 1
2
δ′ω′ = δ′ω′ (∗∗)

for all z ∈ Rη and finite t ∈ T η, t ̸= 0, where θ(t, w) = expη(−π2tw2)Fω′(t, w).
Now, substituting x − y for z in (∗∗), and multiplying through by

6 Taking a principal branch of the logarithm, we have, for w,w′ ∈ C, with w ̸= 0

and |w′ − w| < |w|
2 , that the function θ(t) = log(w + t(w′ − w)) is continuously

differentiable on the interval [0, 1], with;

θ′(t) = w′−w
w+t(w′−w)

Applying the mean value theorem to the real and imaginary parts of f , we obtain;

|log(w)− log(w′)| = |θ(1)− θ(0)| ≤ 2 |w−w′|
mint∈[0,1]|w+t(w′−w)| ≤ 4 |w−w′|

|w| (∗)

Using footnote 2, we have, for w,w′ ∈ C, with |w−w′| < 1 and Re(w) ≤ 0, that;

|exp(w)−exp(w′)| = |exp(w)||exp(w′−w)−1| ≤ |w′−w|exp(|w′−w|)|exp(w)| ≤
e|w − w′| (∗∗)

Now, for t ∈ R, t > 0, we can satisfy the condition |tlog(w′) − tlog(w)| < 1,

using (∗) and assuming that |w′ − w| < |w|
2 , by taking |w′ − w| < |w|

4t . Then,
assuming, that |w| ≤ 1, so that Re(tlog(w)) ≤ 0, and w ̸= 0, we have, combining
(∗), (∗∗), that;

|w′t − wt| = |exp(tlog(w′))− exp(tlog(w))| < 4et |w
′−w|
|w|

if |w′ − w| < min( |w|
2 , |w|

4t ), (†). We now estimate the rate of convergence

of the sequence vn(y) = tn(y)
t − exp(−π2ty2), for t ∈ R>0. Let C(δ, y) be

the constant obtained in footnote 3, so that there (∗ ∗ ∗) holds. Then, it
is easy to see, using (†) and the fact that 0 < exp(−π2y2) ≤ 1, that, if,

n > max(C( exp(−π2y2)
4 , y), C( exp(−π2y2)

8t , y), C(δ′ exp(−π2y2)
8et , y)), then;

|vn(y)| = |tn(y)t − exp(−π2ty2)| < δ′ (††)

In particular, substituting into the expression for C(δ, y), we can find constants
C2, C3 ∈ R, such that (††) holds, for;

n > max(C2,
C3y

2exp(π2y2)t
δ′ ) = C4(y, δ

′, t)
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gη,ω(y), we have, from (∗∗), that;

|(hFω′ )̌(t, x− y)gη,ω(y)| ≤ |θ̌(t, x− y)gη,ω(y)|+ δ′ω′|gη,ω(y)| (∗ ∗ ∗)

for all x, y ∈ Rη and t as above. Now using the growth condition

in Definition 0.16, we have that |δ′ω′gη,ω| ≤
χ[−ω,ω)

ω2 , if δ′ ≤
∗exp(−B|ω|ρ)

Aω2ω′ .

Using [7](Theorem 3.24), the fact that
∫
Rη

χ[−ω,ω)

ω2 dλ = 2
ω
≃ 0, and [1],

we have δ′ω′|gη,ω| is S-integrable, and
∫
Rη
δ′ω′|gη,ω|dλ ≃ 0. In particu-

lar, using Definition 0.10 and Lemma 0.13, this implies that;

(F̌ω′ ∗ f)(t, x) = (hFω′ )̌ ∗ gη,ω(t, x) ≃ θ̌ ∗ gη,ω(t, x) (∗ ∗ ∗∗)

for all finite t ∈ Rη,>0 and x ∈ Rη. Let τ(t, w) = expη(−π2tw2),
then, using the following footnote 7, we obtain by transfer;

|τ̌(t, z)− 1√
πt
expη(

−z2
4t

)| ≤ K(t)
η

+G(t) |z|
η
+H z2

η
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for t ∈ Rη,>0 and z ∈ Rη,(
7). In particular, if ω′′ ∈ ∗N is infinite,

δ′′ ∈ ∗R>0, then we obtain;

7 We require the following estimate, see [6] for relevant terminology. Let
f : R → R be differentiable on R and increasing (decreasing) (∗) on the interval

[ in ,
j
n ], where i, j ∈ Z, −n2 ≤ i < j ≤ n2, and n ∈ N , then;

|
∫
[ i
n , j

n ]
fndλn −

∫
[ i
n , j

n ]
fdµ|

≤ 1
n

∑j−i−1
k=0 |f( i+k+1

n )− f( i+k
n )| (∗∗)

= 1
n

∑j−i−1
k=0 |

∫ i+k+1
n

i+k
n

f ′dµ| (∗ ∗ ∗)

≤ 1
n

∑j−i−1
k=0

∫ i+k+1
n

i+k
n

|f ′|dµ

= 1
n

∫ j
n
i
n

|f ′|dµ (∗ ∗ ∗∗)

where, in (∗∗), we have used the assumption (∗) and the definition of the relevant
integrals, and, in (∗ ∗ ∗), we have used the Fundamental Theorem of Calculus.
Now let Y (x) = exp(−π2tx2)cos(πxz) and let Yn(x) be its λn(x) measurable

counterpart on Rn, where t ∈ R>0 and z = j
n , 0 < j ≤ n2 − 1. Observe that

the zeros of Y on [0, n] are located at the points pk = (2k−1)n
2j , for k ∈ N ∩ [0, j],

and, the local maxima (minima) of Y on [0, n], are located at points qk, where
pk < qk < pk+1, for 0 ≤ k ≤ j − 1, and pj < qj < n, for n ≥ D, some D ∈ R.

Let p′k denote the points [npk]
n , p′′k the points p′k + 1

n , and, similarly, define q′k, q
′′
k ,

then, it is easy to see (check this) that we can choose a constant D(t), such that
0 < p′k < p′′k < q′k < q′′k < p′k+1 < n, for 0 ≤ k ≤ j − 1, and p′j < q′j < q′′j < n, for

n ≥ max(D(t),
√
2j). Now, using (∗∗∗∗), and the fact that Y is monotone on the in-

tervals [p′′k , q
′
k], [q

′′
k , p

′
k+1], for 0 ≤ k ≤ j−1, and on [0, p′0], [p

′′
j , q

′
j ], [q

′′
j , n], we obtain;

|
∫
[p′′

k ,q
′
k)
Yndλn −

∫
[p′′

k ,q
′
k)
Y dµ| ≤ 1

n

∫
[p′′

k ,q
′
k)
|Y ′|dµ (†)

and, similarly, for the other intervals. Choose a constant A(t) ∈ R, such that
|Y (x)| ≤ 1

x2 , (♯), for |x| > A(t). Let kmax be the largest k such that p′′k ≤ A(t), then
(2kmax−1)n

2j + 1
n ≤ A(t) and kmax ≤ jC(t)

n +1. Let U =
∪

0≤k≤kmax
[p′k, p

′′
k)∪ [q′k, q

′′
k ),

then, using the bound |Y | ≤ 1;

|
∫
U
Yndλn| ≤ 1

n2kmax ≤ 2jC(t)
n2 + 2

n (††)

and, similarly, for |
∫
U
Y dµ|. Let V =

∪
kmax<k≤j [p

′
k, p

′′
k) ∪ [q′k, q

′′
k ), then, using

the bound (♯);

|
∫
V
Yndλn| ≤ 2

n

∑
kmax<k≤j

1

(
(2k−1)n

2j )2
≤ 16 j2

n3 (†††)

and, similarly, for |
∫
V
Y dµ|. Let W = (

∪
0≤k≤j−1[p

′′
k , q

′
k) ∪ [q′′k , p

′
k+1)) ∪ [0, p′0] ∪

[p′′j , q
′
j ] ∪ [q′′j , n]. Then, using (†), we have;
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|1
2
τ̌(t, z)− 1√

4πt
expη(

−z2
4t

)| < δ′′ (†)

for all finite t ∈ Rη>0, and z ∈ Rη, with |z| ≤ ω′′, if η > 3ω′′3

δ′′
, (††).

Using Definition 0.6, and transfer of the following footnote 8, we have;

|1
2
τ̌(t, z)− θ̌(t, z)| ≤ 1

2

∫
|x|≥ω′ expη(−π2tx2)dλη(x)

≤ 1
2π

√
t
∗exp(−π2t(ω′ − 1

η
)2)

|
∫
W

Yndλn −
∫
W

Y dµ| ≤ 1
n

∫
W

|Y ′|dµ ≤ 1
n

∫
[0,n)

|Y ′|dµ (††††)

Using (††), (†††), (††††), and the fact that U, V,W is a partition of [0, n), we
obtain;

|
∫
[0,n)

Yndλn −
∫
[0,n)

Y dµ| ≤ 1
n

∫
[0,n)

|Y ′|dµ+ 4jC(t)
n2 + 4

n + 32 j2

n3 (♯♯)

Then, as Y is even, |Y | ≤ 1, |Y ′| ≤ exp(−π2tx2)(2π2t|x|+ πj
n ), we obtain, using

(♯♯);

|
∫
Rn

Yndλn −
∫
[−n,n]

Y dµ|

≤ 2|
∫
[0,n)

Yndλn −
∫
[0,n)

Y dµ|+ 1
n (|Y (−n)|+ |Y (0)|)

≤ 1
n

∫
R |Y ′|dµ+ 8jC(t)

n2 + 8
n + 64 j2

n3 + 2
n

≤ D(t)πj
n2 + 2E(t)π2t

n + 8jC(t)
n2 + 10

n + 64 j2

n3 = F (t)
n +G(t) j

n2 +H j2

n3 (♯♯♯)

where F (t), G(t),H ∈ R. Choosing a constant I(t) ∈ R such that

exp(−π2tx2) ≤ I(t)
2x2 , for |x| > 1, we obtain;

|
∫
Rn

Yndλn −
∫
R Y dµ|

≤ F (t)
n +G(t) j

n2 +H j2

n3 + I(t)
n = J(t)

n +G(t) j
n2 +H j2

n3 (♯♯♯♯)

Let Z(x) = exp(−π2tx2)sin(πxz), with hypotheses and Zn(x) as above. Then,

as Z is odd, |Z| ≤ 1, we have
∫
R Zdµ = 0,

∫
Rn

Zndλn = Z(−n)
n , and;

|
∫
Rn

Zndλn −
∫
R Zdµ| ≤ 1

n (♯♯♯♯♯)

Let X(x) = exp(−π2tx2)exp(iπxz), with hypotheses and Xn(x) as above.
Then, using the estimates (♯♯♯♯), (♯♯♯♯♯) and footnote 4, we obtain;

|
∫
Rn

Xndλn − 1√
πt
e

−z2

4t | ≤ K(t)
n +G(t) j

n2 +H j2

n3 (♯♯♯♯♯♯)

where K(t) = J(t) + 1 and z = j
n .
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≤ ω′∗exp(−π2t(ω′ − 1)2) (†††)

for all z ∈ Rη, finite t ∈ Rη>0, ω
′ ∈ ∗N infinite,(8).

Combining (†) and (†††), gives;

|θ̌(t, z)− Γ(t, z)| ≤ δ′′ + ω′∗exp(−π2t(ω′ − 1)2) (††††)

for all finite t ∈ Rη>0, and |z| ≤ ω′′, z ∈ Rη, if the condition (††)
holds, where Γ(t, z) = 1√

4πt
expη(

−z2
4t

). We have, using Definition 0.10

and (††††);

|(θ̌ ∗ gη,ω)(t, x)− (Γ ∗ gη,ω)(t, x)|

= |
∫
Rη

(θ̌ − Γ)(x− y)gη,ω(y)dλη(y)|

≤
∫
Rη

(δ′′ + ω′∗exp(−π2t(ω′ − 1)2))|gη,ω(y)|dλη(y) (♯)

for finite t ∈ Rη>0, finite x ∈ Rη, if ω′′ = 2ω, that is, from

(††), η > 24ω3

δ′′
, (♯♯). Following the same argument as above, we have

δ′′gη,ω is S-integrable and |δ′′gη,ω| ≤ χ[−ω,ω)

ω2 , if δ′′ ≤
∗exp(−Bωρ)

ω2 , so
we require, from (♯♯), that η > 24ω5∗exp(Bωρ), (♯♯♯). Similarly, we
have ω′∗exp(−π2t(ω′ − 1)2))gη,ω is S-integrable and |ω′∗exp(−π2t(ω′ −
1)2))gη,ω| ≤ χ[−ω,ω)

ω2 , if ∗exp(−π2t(ω′ − 1)2 + 1) ≤
∗exp(−Bωρ)

ω2 . By a

simple calculation, this can be achieved if ω′ ≥ Cmax(log(ω)
1
2 , ω

ρ+1
2 ),

8 We make the following estimate, with t ∈ R>0;∫
|x|≥ j

n ,x∈Rn
expn(−π2tx2)dλn(x)

≤ 2
n

∑n2

k=j exp(−π2t( kn )
2)

≤ 2
∫ n

j−1
n

exp(−π2tx2dµ(x)

≤ 2
∫∞

j−1
n

exp(−π2tx2)dµ(x)

= 2
∫∞
π2t( j−1

n )2
exp(−u)

2π
√
tu

dµ(u), (u = π2tx2)

≤ 1
π
√
t

∫∞
π2t( j−1

n )2
exp(−u)dµ(u), ( j−1

n ≥ 1
π
√
t
)

≤ 1
π
√
t
exp(−π2t( j−1

n )2)
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(♯♯♯♯). If both the conditions (♯♯♯) and (♯♯♯♯) are satisfied, we then have;

(θ̌ ∗ gη,ω)(t, x) ≃ (Γ ∗ gη,ω)(t, x) (♯♯♯♯♯)

for finite t ∈ Rη>0, finite x ∈ Rη. Finally, using Definition 0.10, we
have;

Γ ∗ gη,ω(t, x) =
∫
Rη

Γ(t, x− y)gη,ω(y)dλη(y) (!)

By the growth condition on g, for x ∈ R, t ∈ R>0, if Ψ(t, x− y) de-
notes the standard heat kernel, the function Ψ(t, x− y)g(y) : R → C is
continuous and satisfies the tail estimate |Ψ(t, x− y)g(y)| ≤ 1

y2
for suf-

ficiently large |y| ≥ A(t), A(t) ∈ R. Using the proof of Theorem 0.17
in [6] and Theorem 3.24 of [7], we obtain that Γ(t, x − y)gη,ω(y) is S-
integrable and ◦(Γ ∗ gη,ω)(t, x) = H(t, x), (!!). For finite x ∈ Rη, finite
t ∈ Rη,>0, and

◦t > 0, we have that Γ(t, x − y)gη,ω(y) is S-integrable,
(!!!). In order to see this, choose 0 < t1 < t < t2, with t1, t2 ∈ R, and
x1 < x < x2, with x1, x2 ∈ R. We then have;

Γ(t, x− y)|gη,ω(y)| ≤
√

t1
t2
Γ(t2, x1 − y)|gη,ω(y)|, for y ≤ x1

Γ(t, x− y)|gη,ω(y)| ≤
√

t2
t1
Γ(t2, x2 − y)|gη,ω(y)|, for y ≥ x2

Γ(t, x− y)|gη,ω(y)| ≤ C(t), for x1 ≤ y ≤ x2 (!!!!)

where C(t) ∈ R, and in (!!!!), we have used the fact that g is con-
tinuous. Now applying the result of (!!) and using [1] (Corollary 5),
we obtain (!!!). Then, again using Theorem 3.24 of [7], we have that
◦(Γ ∗ gη,ω)(t, x) = H(◦t, ◦x), (!!!!!). Combining (∗∗∗∗),(♯♯♯♯♯) and (!!!!!),
we obtain that;

◦(F̌ω′ ∗ f)(t, x) = H(◦t, ◦x) (A)

for finite x ∈ Rη, finite t ∈ Rη>0, under the conditions;

η > max(C4(ω
′,

∗exp(−B|ω|ρ)
ω2ω′ , ω′), 25ω5∗exp(B|ω|ρ)) (B)

ω′ > Cmax(∗log(ω)
1
2 , ω

ρ+1
2 ) (C)

By a simple calculation, we can satisfy (B), (C) if;
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η > ω5ω′4∗exp(Bωρ), ω′ > ω2 (D)

and (D) if;

η > ω′6exp(Bω′), ω′ > ω2 (E)

Therefore, it is sufficient to have;

ω′ < log(η)
1
2 , ω < ω

′1
2 (F ).

Using (A) and condition (F ), we obtain the result.
�

Theorem 0.18. Let g be as in Definition 0.16, let gη denote its mea-
surable extension to Rη, and, let gη,ω be the truncation of gη, given by;

gη,ω = gηχ[−ω,ω)

for a nonstandard step function χ[−ω,ω), with ω ∈ ∗N \N , η − ω

infinite and ω < ω
′1
2 . Then, with f̂ determined by Theorem 0.9, with

gη,ω as the boundary condition, we have;

◦( ˇ(Fω′ f̂))|st−1(T>0×R) = st∗(H∞)

if ω′ < log(η)
1
2 , and H∞ is obtained from the classical solution H of

the heat equation, with boundary condition g, given in Definition 0.16.

Proof. With notation as above, we have that;

F̌ω′ ∗ f = 1
2
(F̌ω′ ∗ ( ˇ̂f)) (by Theorem 0.7)

F̌ω′ ∗ ( ˇ̂f) =ˇ (2Fω′ f̂)

as, by Theorem 0.7 and Remarks 0.10, for a, b : T η × Rη → ∗C,
ˆ(ǎ ∗ b̌) = ˆ̌aˆ̌b = 2a.2b = 4ab, (∗), and, 2(ǎ ∗ b̌) =ˇˆ(ǎ ∗ b̌) =ˇ(4ab), by (∗)
and Theorem 0.7. Therefore;

F̌ω′ ∗ f =ˇ(Fω′ f̂)

and the result follows by Theorem 0.17.
�
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Remarks 0.19. Theorem 0.18 gives a solution to the heat equation,
obtained by the following steps;

(i). Truncating the transfer of the boundary data.

(ii). Taking the nonstandard Fourier transform of this data and solv-
ing the resulting ODE in Theorem 0.9.

(iii). Truncating the solution again.

(iv). Taking the inverse nonstandard Fourier transform.

(v). Specialising.

By straightforward results on limits in nonstandard analysis, see
Theorem 2.22 of [7], it follows that the above algorithm converges for

{m,n, n′}, with n < (n′)
1
2 , n′ < log(m)

1
2 , (replacing {η, ω, ω′} respec-

tively), as m→ ∞ (noting that, for η infinite, η − log(η)
1
4 is infinite).

It seems likely that the algorithm is faster than current methods in-
volving a recursion over both the space and time steps. However, this
still has to be decided computationally. This would be a useful result in
financial mathematics, as it is well known that the Black Scholes equa-
tion, with the boundary condition for call options, can be transformed
into the heat equation by a simple change of variables.
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