A SIMPLE PROOF OF THE UNIFORM
CONVERGENCE OF FOURIER SERIES IN
SOLUTIONS TO THE WAVE EQUATION

TRISTRAM DE PIRO

ABSTRACT. Using methods of [2], we show that the time depen-
dent Fourier series of any F' € C*°(0, L), solving the wave equation,
with F'(0,t) = F'(L,t) = 0, converges uniformly to F', on [0, L], and
find an explicit formula for such series.

Definition 0.1. We let;
c(0,L]) = A{feC(0,L]): floz € C™(0, L),
(\V/Z S n)EIT’L € C[OaL]7ri|(0,L) = f(l)}7 (l)

Co(l0, L)) = {f e C™([0,L]) = f(0) = f(L) =0}

(0, L) = {f € C(0. L) = flo.ry € C=(0, L)

V(i <n)3ri € C(0, L)), rilor) = £}
Coo(0, L)) = {f e ¢=([0,L]) = f(0) = (L) =0}
C™([0,L] x R) = {F € C([0,L] x R) : Flo,1)x» € C"((0,L)x

R), (Vi < n)3r; € C([0, L] X R) 7ilo.yxr = 2L

Cn([0,L] x R) = {F € C"([0,L] x R) : (Vt € R), F(0,1)

IThis definition is equivalent to, (Vi < n){ff)(O),f@(L)} exist, where, for
FO -0

i < n, f_g_i)(O) is defined inductively, by , _(:)(O) = lims_o . ,
and, similarly, for fﬁi)(L). In order to see this, just observe that, for i < n,

(i—1)(\_ p(i—=1)
lims%of (S)8f+ (0)

ate Value Theorem.

= limsﬁof(i)(s), by L’Hopital’s Rule and the Intermedi-
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= F(L,t) =0}
C=([0,L] x R) = {F € C([0,L] x R) : Flo.oyxr € C=((0, L)

R),V(i < n)3Ir; € C([0, L] X R) 7il(0,)xr = gr

oz
C2o([0, L] x R) = {F € C=([0,L] x R) : (Vt € R), F(0,) =
F(L,t) =0}

We let {T, M, L} denote the tension,mass and length of a string,
with = M/ L, the mass per unit length. The wave equation;

0%°F __ T 9*F <*>

ot2 Ty 0x?

with boundary condition F(0,t) = F(L,t) =0, fort € R, describes
the motion of a vibrating string under tension, fized at the endpoints,

().

We say that h € C(|—L,L]) is symmetric, if h(—x) = h(z), for
€ [-L, L], (with endpoints identified). We say that h € C(|]—L, L])
is asymmetric if h(—x) = —h(x),for x € [—=L, L], (with endpoints iden-
tified). We use the same notation as above for functions on [—L, L],

(with endpoints identified). We define;

Cr((—L,0)0(0, L)) = {f € C((—L,000(0, L)) : I(ry € C*(|—L,0]),73) €
C™([0, L)), 1| (=1.0) = fl=r.0): T2l 0,0) = flo,)}

We require the following results;

Lemma 0.2. Let h € C([-L, L)) be asymmetric, with h|_r0u(o,L)
C'((=L,0) U (0,1)), (=), then h(0) = A(L) = h(~L) = 0, H,(~L)
h_(L), W' (0) = h_(0), h' € C([-L,L]), and I is symmetric. Let h
C([-L, L]) be symmetric, with h|r0u0.0) € C*((—=L,0)U(0, L)) (x%),
and ' (—=L) =h"_(L) =0, hﬁr(O) R (0) =0, then % e C([-L, L)) is

asymmetric.

S
S

Proof. For the first part, we have, if h is asymmetric, satisfying (%),
then h(L) = —h(—L) = —h(L) and h(0) = —h(—0) = —h(0), so

2By a solution to the wave equation, we mean F € C$°([0, L] x R), satisfying
the equation (%) on (0,L) x R
2
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h(0) = h(L) = h(—L) = 0. We have that;

h(— L+s

= lims_o = limg_o— h( <) (by asymmetry and h(—L) = 0)

= lim 0" M=) — by (L) (as h(L)=0)

Similarly, A/ (0) = h’(0). By L’Hopital’s rule, and the fact that
h|(-ro0uo.r) € CH((—L,0)U(0, L)), we have that lims_,oh'(s) = lims_o
= 1/ (0), and, similarly, lims_oh'(—=s) = R (0), limsoh'(L — s) =
h' (L), lims_oh/(—L + s) = h_(L). Hence, b’ € C([—L,L]), and A’ is
symmetric by the fact that h(z) = —h(—z), and, therefore, h'(z) =
B (=), for x € (—L,0) U (0, L), and, automatically, h'(L) = h/(—L),
h'(0) = h/(—0), as these points are fixed.

Let h € C([-L, L]) be symmetric, satlsfymg (xx). By L’Hopital’s
rule, and the fact that h|_r 0u0,0) € C*((—L,0)U(0, L)), we have that
lim o' (s) = lim, ™20 — b (0) =0 = h’ (0) = lim,_," @~
lims_,oh'(—s) and, similarly, lims_,oh'(L —s) = h'_(L), lzmsﬂgh’(—L—l—
s) = h'_(L). Hence, W € C(|—L, L]), and A’ is symmetric by the fact
that h(z) = h(—x), and, therefore, h'(z) = —h'(—x), for z € (—L,0) U
(0, L), and, automatically, h'(L) = h'(—L) =0, '(0) = h/(—0) = 0, as

these points are fixed.

l

Lemma 0.3. Let f € C*([0,L]), such that f(0) = f(L) = 0 and
7(0) = fU(L) = 0, (%), then there exists h € C*([—L, L)), (with
endpoints identified), such that hlj ) = f, h is asymmetric about 0, and
h' is symmetric about 0. Let f € C?([0, L)), such that f(0) = f(L) =0
and f1.(0) = f.(L) =0, (xx), then there exists h € C*([—L, L]), (with
endpoints identified), such that h|j, ) = f, h is symmetric about 0, and
h' is asymmetric about 0.

Proof. Suppose that f satisfies () and
0, L], and h(z) = —f(—x), for z € [—
= and h € C(|—L,L]).

metric about 0, h(O) = h( ) (— 0,

Moreover, h|—rouo,r) € C*((—L,0) U (0,L)), as f € C’l([O,L]). By

Lemma 0.2, we have that h' € C([-L, L)), and k' is symmetric. More-
0,L)), as f € C*([0,L]) and f' €

over, I'|_rouo.r) € C'((—=L,0) U ( , L)

t h(z) = f(z), for z €
. Then clearly A is asym—

€
h
0

h(s)=h(0)

JOhs) _
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C1([0, L]). We have that;

(WY, (—L) = lim_qe ML CEL)

i g M)

by asymmetry)

)= (L)

- _l2m3_> s

= —lim o TEEZD — gy =

and;
(BY_(L) = lim o “EE=)

R (L)—f'(L—s)

= Mms—>0 S

= lim, ==

= limy o LELEZD) ey —

Similarly, (b)Y, (0) = f(0) = 0, (k')" (0) = —f"(0) = 0

Applying Lemma 0.2 again, we obtain that (k') € C[—L, L], hence
h € C*([-L, L)).

Suppose that f satisfies (xx) and let h(x) = f(x), for z € [0, L],
h(z) = f(—x), for x € [-L,0). Then h is symmetric and k|1, 0)u0,1) €
CY((—L,0)uU (0, L)). Moreover;

— lim g h(L—s;—h(L)

F(L)—f(L=s)
0

- —lstH s

= /(L) =0

Similarly, h' (L) = f.(L) = 0, h/(0) = f,(0) = 0, and A" (0

—f7.(0) = 0. Again, applying Lemma 0.2, we obtain that h’ € C([—L, L])
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is asymmetric. We have that 1'|(_r.0u0,0) € C*((—L,0) U (0,L)), as
f € C*([0,L]) and f" € C'(]0,L]). Applying Lemma 0.2, we obtain
that (k') € C[—L, L], hence h € C?*([—L, L]).

U

Lemma 0.4. Let f € C*([0,L]), such that f(0) = f(L) = 0 and
ff)(O) = ff)(L) =0, ff‘)(O) = fJ(f)(L) =0, (x), then there exists h €
C4([-L, L)), (with endpoints identified), such that bl = f, {h,h ¥}
are asymmetric about 0, and {hY K3} are symmetric about 0. Let
f e CY[0,L]), such that f(0) = f(L) =0 and £"(0) = f(L) =0,
f’)(()) = fJ(FS)(L) = 0, (xx), then there exists h € C*([—L, L)), (with
endpoints identified), such that hlpr = f, {h, hY are symmetric
about 0, and {hM), h®} are asymmetric about 0.

Proof. For the first part, let i be defined as in 0.3, then h € C*([—L, L]),
(with endpoints identified), hlj,z; = f, h is asymmetric about 0 and
A is symmetric about 0. We have that f® € C2([0, L)), ff)(O) =
ff)(L) = 0, and ff‘)(O) = fJ(rA‘)(L) = 0, so f? satisfies the hypothe-
ses of Lemma 0.3. Moreover, h®(z) = f® (), for z € [0, L], and
h®(—z) = —f®(—z), for z € [~L,0). Then, by the result of 0.3, we
have that h?) € C?([—L, L]), (with endpoints identified), h(? is asym-
metric about 0 and A is symmetric about 0. Hence h € C*([—L, L)),
and the remaining claims are clear. The proof of the second part of the
lemma follows the same strategy.

L),

Lemma 0.5. Let f € C§°([0, L]), then there exists { f1, f2} C C5°([0,
Lf =

with f{,+(0> = f{,+<L) =0, fé/,Jr(O) = él,+(L) = 0, such tha
i+ fa

Proof. Consider the equations g(0) = g(L) = 0, ¢'(0) = ¢'(L) = 0,
g"(0) = f/(0) and ¢"(L) = f”(L), (x) on the space V5 = {g € R[z] :
deg(g) = 5}. Let T : Vs — RS be given by;

We have that Ker(T) = 0, as if T(g) = 0, then, clearly g(z) =
dz® + ex + fa°, with {d,e, f} C R, then, ¢'(z) = 3dx? + dex® + 5 fa,
g"(z) = 6dz+12ex*+20fx3, and we have that g(L) = ¢'(L) = ¢"(L) =
0, iff;
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d 0 1 L 12
Aclel=(0],A= (3 4L 5L?
f 0 6 120 20L2

We have that det(A) = 2L% # 0, hence, d = e = f = 0, as
required. Then, T is onto, by the rank-nullity theorem, hence, we
can find a solution to (%), corresponding to T(g) = vy, where vy =
(0,0,0,0, f(0), f"(L)). Let f; be the unique polynomial in Vs, satisfy-
ing these conditions, and let fo = f — f1. It is now a simple calculation
to see that { f1, fo} satisfy the required conditions. O

Lemma 0.6. Let f € C§°([0,L]), and n € 2>y, then there exists
{fi, f2} € CE(0, L), with f7(0) = AZ7(L) = 0, /2(0) =
f1(2f)(L) =0, for 1 <j <n, such that f = f1 + f.

Proof. Consider the equatlons g(O) g L) =0,g%V(0) = g% (L) =
0, and g®)(0) = f*(0), g*)(L >=f£2 (L), for 1 < j < n, (x), on
the space Vaoni1) = {9 € R[ ] deg(g) = 4n + 1}. Let T : Vony1) —
R22n+1) be given by:

(T'(9))2 = 9(L)

(T(9))142; = 9(0)

(T(9))242 = g"(L) (1 < j < 2n)

We have that Ker(T) = 0, as if T'(g) = 0, then, using the fact that

g(0) = 0, gV (0) = 0, for 1 < j < 2n, we have g(z) = 2?2;}“ a;x’,
with a; € R, for 2n +1 < i < 4n + 1. Then, for 1 < j < 2n;

i 4n+1 ;
gV (x) =3, ;_n+1 (=] ) a;x'™
and we have that g(L) =0, gV (L) = 0, for 1 < j < 2n iff;

6
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1 “ . L1 - LAt

A2n+1 0
(2n+1)! (2n+i)!ILi—1L (dn+1)1L2n—1
A4n+1 0 (2n+1)! (2n+i)!Li*1 (4n)!L2n71

2! ' (i+1)! o 2n+1)!
for 1 <i,5 < 2n.

We have that det(A) = cL"®"=Y +£ 0, (work out c¢) hence, a; = 0,
for 2n +1 <7 < 4n + 1, as required. Then, T is onto, by the rank-
nullity theorem, hence, we can find a solution to (x), corresponding to
T(g) = vy, where;

(v1); =0,1<5<2

(01); =0, (j =4k —1, j =4k, 1 < k < n)
(v1); = F20), =4k +1,1 <k <n)
(n1); = fP(L), (j =4k +2, 1<k <n)

Let fi be the unique polynomial in V5(9,41), satisfying these condi-
tions, and let fo = f — f1. It is now a simple calculation to see that
{f1, f2} satisfy the required conditions. O

Lemma 0.7. Let f € C§°([0, L)), then, for all € > 0, there exists
g € C*([~L, L]), such that;

g|[€,L*E) = f|[e,L76)-

Proof. By Lemma 0.5, we can find { f1, fo} C C5°([0, L]), with f] , (0) =
fi(L) =0, f5,(0) = fi, (L) = 0, such that f = f, + f,. By Lemma
0.3, we can find {g1,92} C CZ([0, L]), with il = f1, 92l = fo
and g; symmetric, go asymmetric. Let g = g1 + go, then g € C2([0, L),
and g|[e,L—5) = f|[€7L_E). O

Lemma 0.8. Let f € C§°([0, L)), then, for all € > 0, there exists
g € CY[—L, L]), such that;
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g’[E,L—e) = f|[e,L—e)-

Proof. By Lemma 0.6, we can find { fi, fo} € C§°([0, L]), with fl(lJ)r(O) =
ALY =0, fi7(0) = f2(L) = 0, £5210) = £2(L) = 0, £5(0) =
f2(42(L) = 0 such that f = f; + fo. By Lemma 0.4, we can find
{91,092} € C3([-L,L]), with giljoz) = f1. Gelio.) = fo and g1 sym-
metric, go asymmetric. Let g = g; + g, then g € Cj([—L, L]), and
Iler—o = flie—o- O

Lemma 0.9. Let F' € C*([0, L] x R), such that F(0,t) = F(L,t) =0,
for allt € R, and let F), (0) = F/ (L) = 0, (%), then there exists
H e C*([-L,L} x R), (with endfaces identified), such that H|p rjxr =
F, H is asymmetric about 0, and %—Z 18 symmetric about 0. Let F' €
C*([0,L] x R), such that F(0) = F(L) =0 and F{  (0) = f; (L) =0,
(xx), then there exists H € C?([—L, L] x R), (with endfaces identified),
such that H|[0,L]><R = F, H 1s symmetric about 0, and %—f 1S asymmetric
about 0.

Proof. Suppose that F satisfies (x) and let H(z,t) = F(z,t), for (z,t) €
0,L] x R, and H(x,t) = —F(—x,t), for (z,t) € [-L,0) x R, (* %
). Using the result of Lemma 0.3, we have, for t € R, that H; €
C?([—L, L)), (sxxx), Hy|jor) = Fy, (sssixx), Hy is asymmetric about 0,
(1), and Hj is symmetric about 0, (). Let 7o € C([0, L] x R) be given,
as in Definition 0.1, for F', so that r|,1)x» = %712{|(0,L)><R, (3 % % % k),
and let o, € C([—L,0] x R) be given by ro;(z,t) = —ro(—z,t), for
(x,t) € [-L,0] x R, so that 79|~ ro)xr = %2712{|(7L,0)><R7 (k* %% x). Let
Ry be defined by Ry(x,t) = ro(z,t), if (x,t) € [0, L] xR, and Ry(x,t) =
rou(x,t), if (x,t) € [-L,0]xR. Then Ryy|[_1 1) = Hy, hence, by (xxxx),
in fact, Ry € C([—=L,L] x R), and, by (x * %), (s % % % %), (% % % % *x),
Rol((-royo.ryxr = 24, Tt follows that H € C?([~L,L] x R) (with
endpoints identified). By (% % * % % % %), we obtain immediately that
Hljo,jxr = F. The fact that H is asymmetric about 0, is obvious, from
(t)- In order to see the final claim, let r; € C([0, L] x R) be given,
as above, r1; € C([—-L,0] x R), be given by, 71 (x,t) = r(—z,t), and
Ry € C([0, L] xR) be defined by Ry (x,t) = ri(z,t), if (z,t) € [0, L] xR,
and Ry(x,t) = ry(x,t), if (z,t) € [-L,0] x R. It is easy to see, as
above, that Ry € C([~L,L] x R) and Ri|(_r,1)xr = %=. Then, for
t € R, Rigl(—r,n) = (H)', so that, for t € R, Ry = r1y, (111), where
r1,4 is given, as in Definition 0.1, for each H;. Then, the fact that %—f

is symmetric about 0, follows from the pointwise property (1), and,
8
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(11). The second part of the lemma is the similar, following the proof
above O
Lemma 0.10. Let F' € C4([0, L) xR), such that F(0,t) = F(L,t) =0,
for allt € R, and let F)(0) = F(L) = 0, FJ(0) = F(L) =0
(), then there exists H € C*([—L, L] x R), (with endfaces identified),
such that H|[0,L]x72 =F, H, %I;I are asymmetric about 0, and aH, %if;’
are symmetric about 0. Let F € C*([0,L] X R), such that F(O)

F(L) = 0 and F)(0) = FY(L) = 0, F20) = FP(L) = 0 (x%),
then there exists H € CY([—L, L] x R), (with endfaces identiﬁed} such

OH 3H
9z ozs AT

that H|[07L}XR = F, H, %g are symmetric about 0, and
asymmetric about 0.

Proof. For the first part, by Lemma 0.9, we can find H € C?([—L, L] x
R), with H|jojxr = F, H asymmetric about 0, and 81;[ symmetric
about 0. We have that a 5.z satisfies the conditions of Lemma 0.9, as,
by the assumptions, & F e C2([0,L] x R), Z£(0,t) = %(L,t) =0

) Ox B2 ) Ox2
and (Z£)2)(0) = F2(0) = F2(L) = (Z25)P (L) = 0, for all t € R,
(®). Moreover, by definition of H, we have that ‘98 (', t) = 8 9L (1),

for (2/,t) € ([0,L] x R), and ‘987[2{(36,75) g‘f( '), for (x,t)
((=L,0) x R). Hence, by the conclusion of Lemma 0.9, we have that
82H € C*([-L, L]), (with endfaces identified) %2—13 is symmetric about

O and ‘9 .5 1s asymmetric about 0, as required.
O

Lemma 0.11. Let F' € C§°([0, L] x R), then there exists {Fy, F5} C
Coo(10, L] x R), with Fy, . (0) = F{, (L) =0, F3, ,(0) = F5, (L) =
0, such that F = F| + F5.

Proof. This is just a uniform version of Lemma 0.5. Let;
vie = (0,0,0,0, FY, (0), FY (L)), pre = T H(viz)
Then;

Pre =i di(t)a’

where the coefficients d;(t) = A\iF}", (0) + p FY', (L)

3Here we use the fact that, for t € R, ((%12) Ny = F)Plo.n),
SO (( : ))(2)|(0 L = (Ft)(4)\(o,L), (), and, using Definition ??, the limits
( 527 ) l(O) F (7 )(O) are recovered uniquely from the relation (x)

9
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for fixed constants {\;, ;;} C R, 0 <i <5. Let ry € C5°([0, L] x R)
be given, as in Definition 0.1, and ¢o(t) = 72(¢,0), ¢r(t) = ra(t, L),
then, clearly, {¢g, dr} C C*(R), so clearly, we have that;

e = Yoo (Nigo(t) + pigpr(t))a

and p1; € C°([0, L] x R). Letting Fy = p14, and Fy, = F — Fy, we
obtain the result.
O

Lemma 0.12. Let I € Cg°([0, L] x R), then there exists {F1, Fo} C
Ceo([0, LIxR), with F%7V(0) = FEZV(L) = 0, F.(0) = By (L) =
0, for 1 < j <mn, such that F = F| + F5.

Proof. This is just a uniform version of Lemma 0.6. Let v;; be de-
fined as in Lemma 0.6, replacing {ffk)(O),fE%)(L) : 1 <k <n}by
(FE0), FPP(L) 11 < k <n}, and, let pr, = T~ (v1).

Then;

pre = ity di(t)

where the coefficients d;(t) = Zzzl(/\ikﬂ(,ik) (0) + ,uikFSQ,k)(L)

for fixed constants { Ay, pir : 0 < i <4dn+ 1,1 <k <n} CR. Let

{roae : 1 <k <n} C C§([0, L] x R) be given, as in Definition 0.1, and

Gok(t) = 12(t,0), dr i (t) = rar(t, 1138, then, {¢ok, ¢rr: 1<k <n}C
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C*=(R), (*). We have that;

pre=Sia  (Cro Aador(t) + pindr )’

and py; € C°([0, L] x R). Letting Fy = p14, and Fy = F — Fy, we
obtain the result.
]

Lemma 0.13. Let F € C$°([0, L) X R), then, there exist {G1, G, G} C
C*([-L, L] x R), such that, for all e >0 ;

(i)'Gl[e,L—e)XR = F|[5,L—e)><'R-

(ii). Gy is asymmetric and % is symmetric about 0.

(7i1). Go is symmetric and % is asymmetric about 0.

Proof. By Lemma 0.11, we can find {Fy, F»} C C§°([0, L] x R), with
F{ . (0)=F] (L) =0, F} (0) = F}/, (L) = 0, such that F' = Fy + F5.
By Lemma 0.9, we can find {G1, G2} C C§([—L, L]), with G1|,1; = G1,
(GG1 asymmetric and % symmetric about 0, and with Gs|j,) = G2, G2

4We have that;

limhﬁo<T2k(L’t+h})L_T2k(L’t) ) = limp_o(lima_ 1,

(Tzk (x’t+h}1_r2k(x7t) ))’ (*)

As rop € C([-L, L] x R), for fixed h # 0;

limzHL T2k(z7t+h]2—r2k(x,t) _ rgk(L,t-i-h}z—er(L,t)

For fixed o’ # L;

. rog(z’ t+h)—rop(z’,t) _ §**tip . ,
limp 0o A = Ha2kFI (93 7t)

. . 2kl
and, moreover, the convergence is uniform for 2’ € (0, L), as ‘gﬂikff is bounded

on (0,L) x (t—¢,t+¢), for any € > 0. It follows that we can interchange the limits
in (%), to obtain that;

Tzk(L,t+h)*T2k(L7t))
h

limh—>0(

=limy_1, (limhao( rzk(a;t-l—hlz—r%(:p,t) ))

; 2k41
= limgr— 1% (', 1) = ropg (L, 1)

11
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symmetric and %G? asymmetric about 0. Let G = G; + G,, then
G e C3([-L,L] x R), and Glie,L—axr = Flie,L—e)xr, as required. O

Lemma 0.14. Let F € C§°([0, L] X R), then, there exist {G1, G2, G} C
CY([-L, L] x R), such that, for all 0 < e < £,

()GleL XR_F|[EL XR-

.. 2 . .

(i1). Gy, 88521 are asymmetric and ag:l ) % are symmetric about 0.
o 2 . 3 .

(7i1). Go, 88522 are symmetric and %, aangg are asymmetric about 0.

Proof. By Lemma 0.12, we can find {Fy, Fo} C C3°([0, L] x R), with
1 1 3 3 2 2

FN(0) = F2(L) =0, F?/(0) = FP(L) = 0, F{?)(0) = F}?(L) =0,

FQ(?(O) = F2(4_)(L) = 0, such that F' = F; + F;,. By Lemma 0.10, we can

find {G1,Gs} C Cy([—L, L]), with G1|j.) = Fi, Gl, o 2G1 asymmetric
and 886;’ 88%1 Symmetrlc about 0, G2|[0,L] F27 GQ’ 6 symmetrlc and

9Ga G asymmetric about 0 Let G = Gy + Gy, then G € CA([—L, L] x
R), and Gl —exr = Flje,L—xr, as required. d

Lemma 0.15. Let F' € C§°([0, L] X R) be a solution to the wave equa-
tion, then, for allt € R

; 02F
lzme—>0w |(e,t) =0

lim, 0 ZE(L —e,t) = 0

Proof. Let {G1,G3,G} be given as in Lemma 0.14. Then, for all
t € R, Gy € CY[-L, L)), and, using [2], the Fourier series expan-

sion ) -~ em(t)e ™™ of Gy converges uniformly to Gy on [—L, L], (°).
Similarly, as G\ € C2([—L, L)), for 0 < n < 2, the Fourier series

Tim ) mizTm

expansion )~ cp(t)(*F £ of G\, converges uniformly to G\"
n [—L, L], for 0 <n <2 (x). We have that;

Trz:Em

Cm _Lf G.Tt) dx

Hence, as, for 0 <n <4, t; € R, g 9°G is bounded on [—L, L] x (ty —

d,to+9), by the DCT, we have that c.,,, € C*(R). Moreover, we have,

®In fact, we only require that Gy € C?([—L, L]), see also [3]
12



A SIMPLE PROOF OF THE UNIFORM CONVERGENCE OF
FOURIER SERIES IN SOLUTIONS TO THE WAVE EQUATION3

for 0 < n <4;

ng) (t) — ﬁ fL 6;56 (x,t)e_ m’zm du

Hence, again, as £9<t ¢ C2(|—L, L]), for 0 < n < 2, the Fourier

ain
. . 7T74Zm . n
series expansion ) cgn)(t)e of 226t converges uniformly to ‘985‘

otn
n [—L, L], for 0 <n <2. Then;

2 mizm
aagt = Zmez m( ) L

2 Tim mizm m2m?2\ Tizm
aamcgt = ZmGZ cm(t)( L Vet = _ZmEZ e (t)( 12 Je t
Using the facts that 88,% = Taa 2, on (0, L), the series 3, 2[cp (¢)+
cm(t)(”j;zy)]e% is analytic on [—L, L], and {e"T" : m € Z} are or-

thogonal on [—L, L], we obtain that;

() + em(D)(=H2E) = 0 (L€ R)

1w7nft 17r7nﬁt
cm(t) = Ape WF 4+ Bpe  LVE

with {A,,, B} CC, A, = a,, +idl,, By, = by, + b, and;

imtmVTt ﬁzzm _immVTt  iem

— L L
G =2 ez Ame WP + 2 ez Bme WV en
2 2 Zﬂmft 7r7,z'm 77:7””‘/?75 wixm

92G
Then —8 ——[ZmeZAm 7 Vi e "'ZmezBmeT e LvE e L

S Zmez#o(am + by ) - L2 cos(”im)cos(mf\‘ft) +0(x,t) = S;
where 6(0,0) = 60(L,0) =0

We have that;

[(@m +bu)| = 32| 1, Go(w)cos(=52)de|

< L71f_LL|G(()n)|clx < ig’n", for0<n<4

— Qxnmn

L 1||Go HLl( L.L)
27

where Cy,, =

Then;

13
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2 2

|2268](0) = S0 < Y ez am + bl (252)

Con / w2m?2
< Z1§|m|gk_1 |G + bm|( ) + Z|m|>k T,Sn ("5 72 )

L3165 |
(=L,L)
) + Z\m\Zk 2= 2mn—2

2.2
= D 1<im|<k—1 |@m + b (FZ7

Taking n = 4, we obtain;

So < El<|m|<k 1 lam + b, |< ) + Z|m|>k 272 m2HG0 |Li(-r.p)

w2m? 4
< Zl§|m|§k—1 |+ bm| (F75-) + 2ﬂ2(]—2,1)||G§J )||L1(—L,L)’ (%)

We have, by conditions (i), (77) of Lemma 0.14 and the FTC, that,
forall 0 <e< L;

| + | < L [ |Go(x)|dz + [, 27| Go()|dx

< 1(Go(e)| + Go(=)| + |Go(L — €)| + |Go(—L + €)])

= 2(|Fo(e)] +Gro(=6)| + [Gao(—€)| + [Fo(L — )| +[|G1(—L + ¢)]
+|Ga0(—L +€)l)

212 ¢
< 26 (7)

for sufficiently small e(k,0"), as Fy € Co([0, L]) and {G1, G20} C

(2)
Co([~L, L]). Taking k > i H%YL % we then have that |So| < &'

Then, using condition (i) of Lemma 0. 14 and the fact that @ is
continuous at 0, we obtain that lzme_mw( €) = 0 as required. In a
similar way, using an expansion around an arbitrary ¢, € R, we obtain

2
that limﬁo%(e) = 0, as required. By exactly the same method, we
2
obtain that lim, o2 (L — ¢) = 0. O

Lemma 0.16. Let F' € C3°([0, L] x R be a solution to the wave equa-
tion. Then, the Fourier series expansion of F' is given by;

ZmeZ>0 KmCOS<ﬂ-Lm—\/\/?)Szn(%) + LmSin(Trzlgt)gln(”im)

which converges uniformly to F on [0, L].
14
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FOURIER SERIES IN SOLUTIONS TO THE WAVE EQUATION,

Proof. By Lemma 0.15, we have that, for ¢ € R, lz’mﬁoaift (€) =
lime_ﬂ)%(L — €) = 0. Using the fact;

lime 0 LS (€) = lim, 0254 (L — €) = 0

from Lemma 0.14, we obtain that;

lime o282t (€) = lime_0 2524 (L — €) = 0

Using Lemma 0.3 of [1], we obtain that;

PGt (¢) = lime oS (L — ¢) = 0

4

lime—)o

Hence, by Definition of G5 in 0.12,0.14, we obtain that Gy = 0. It
follows that there exists G; € Cg([—L, L] x R), with G; asymmetric
about 0, such that Gy|j,) = F.

Let h € Cj([—L, L]) be an asymmetric function, and let;

h(z) =73 cz h(m)e™™ be the Fourier series expansion of h, with;

h(m) = 5= [*, h(z)e

We have that;

-7

izm, forme Z

h(m) = = f_LL h(z)cos(™™)dx — 5 f_LL h(z)sin(™™)dx

= 5 J2, hlw)sin(Z2)de = 2 [ f(a)sin(T2) = ie,,

with e, = —e_,,, for m > 0, so ¢y = 0. Then,;

h(z) = — Zmez>0 2, sin(TF)

Then writing;

Gi(t,2) = X ez, fm(t)sin(*F")

and substituting into (x) of Definition 0.1, justified by the method
of Lemma 0.15 and the fact that G; € C*([—L, L] X R), we have that;

15
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Yomezsy Fm(O)SI(FF) = =L (3 ez fon () (F)*sin(ZF2))

Hence, f”(t) = ——fm( )(ER2) = —ﬂQL@;Tfm@)
fn(t) = Kycos(Z2YTt) 4 L, sin(=2/Tt)
giving;

Gi(t, ) =3 ez, chos(zm—\/‘/?)sm(%)—l—ljmsin(Wangt)sm(mm)

where the convergence is uniform on [—L, L]. Using the fact that
Gilp,r) = F, by Lemma 0.11, we obtain that the series converges uni-
formly to F' on [0, L] as required.
O
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