
A SIMPLE PROOF OF THE UNIFORM
CONVERGENCE OF FOURIER SERIES IN
SOLUTIONS TO THE WAVE EQUATION

TRISTRAM DE PIRO

Abstract. Using methods of [2], we show that the time depen-
dent Fourier series of any F ∈ C∞(0, L), solving the wave equation,
with F (0, t) = F (L, t) = 0, converges uniformly to F , on [0, L], and
find an explicit formula for such series.

Definition 0.1. We let;

Cn([0, L]) = {f ∈ C([0, L]) : f |(0,L) ∈ Cn(0, L),

(∀i ≤ n)∃ri ∈ C[0, L], ri|(0,L) = f (i)}, (1)

Cn
0 ([0, L]) = {f ∈ Cn([0, L]) : f(0) = f(L) = 0}

C∞([0, L]) = {f ∈ C([0, L]) : f |(0,L) ∈ C∞(0, L)

∀(i ≤ n)∃ri ∈ C([0, L]), ri|(0,L) = f (i)}

C∞
0 ([0, L]) = {f ∈ C∞([0, L]) : f(0) = f(L) = 0}

Cn([0, L]×R) = {F ∈ C([0, L]×R) : F |(0,L)×R ∈ Cn((0, L)×

R), (∀i ≤ n)∃ri ∈ C([0, L]×R) ri|(0,L)×R = ∂iF
∂xi }

Cn
0 ([0, L]×R) = {F ∈ Cn([0, L]×R) : (∀t ∈ R), F (0, t)

1This definition is equivalent to, (∀i ≤ n){f (i)
+ (0), f

(i)
− (L)} exist, where, for

i ≤ n, f
(i)
+ (0) is defined inductively, by ,f

(i)
+ (0) = lims→0

f(i−1)(s)−f
(i−1)
+ (0)

s ,

and, similarly, for f
(i)
− (L). In order to see this, just observe that, for i ≤ n,

lims→0
f(i−1)(s)−f

(i−1)
+ (0)

s = lims→0f
(i)(s), by L’Hopital’s Rule and the Intermedi-

ate Value Theorem.
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= F (L, t) = 0}

C∞([0, L]×R) = {F ∈ C([0, L]×R) : F |(0,L)×R ∈ C∞((0, L)×

R), ∀(i ≤ n)∃ri ∈ C([0, L]×R) ri|(0,L)×R = ∂iF
∂xn}

C∞
0 ([0, L]×R) = {F ∈ C∞([0, L]×R) : (∀t ∈ R), F (0, t) =

F (L, t) = 0}

We let {T,M,L} denote the tension,mass and length of a string,
with µ = M/L, the mass per unit length. The wave equation;

∂2F
∂t2

= T
µ

∂2F
∂x2 (∗)

with boundary condition F (0, t) = F (L, t) = 0, for t ∈ R, describes
the motion of a vibrating string under tension, fixed at the endpoints,
(2).

We say that h ∈ C([−L,L]) is symmetric, if h(−x) = h(x), for
x ∈ [−L,L], (with endpoints identified). We say that h ∈ C([−L,L])
is asymmetric if h(−x) = −h(x),for x ∈ [−L,L], (with endpoints iden-
tified). We use the same notation as above for functions on [−L,L],
(with endpoints identified). We define;

Cn((−L, 0)∪(0, L)) = {f ∈ C((−L, 0)∪(0, L)) : ∃(r1 ∈ Cn([−L, 0]), r2) ∈
Cn([0, L]), r1|(−L,0) = f |(−L,0), r2|(0,L) = f |(0,L)}

We require the following results;

Lemma 0.2. Let h ∈ C([−L,L]) be asymmetric, with h|(−L,0)∪(0,L) ∈
C1((−L, 0) ∪ (0, L)), (∗), then h(0) = h(L) = h(−L) = 0, h′

+(−L) =
h′
−(L), h

′
+(0) = h′

−(0), h
′ ∈ C([−L,L]), and h′ is symmetric. Let h ∈

C([−L,L]) be symmetric, with h|(−L,0)∪(0,L) ∈ C1((−L, 0)∪(0, L)), (∗∗),
and h′

+(−L) = h′
−(L) = 0, h′

+(0) = h′
−(0) = 0, then h′ ∈ C([−L,L]) is

asymmetric.

Proof. For the first part, we have, if h is asymmetric, satisfying (∗),
then h(L) = −h(−L) = −h(L) and h(0) = −h(−0) = −h(0), so

2By a solution to the wave equation, we mean F ∈ C∞
0 ([0, L] × R), satisfying

the equation (∗) on (0, L)×R
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h(0) = h(L) = h(−L) = 0. We have that;

h′
+(−L) = lims→0

h(−L+s)−h(−L)
s

= lims→0
h(−L+s)

s
= lims→0

−h(L−s)
s

(by asymmetry and h(−L) = 0)

= lims→0
h(L)−h(L−s)

s
= h′

−(L) (as h(L)=0)

Similarly, h′
+(0) = h′

−(0). By L’Hopital’s rule, and the fact that

h|(−L,0)∪(0,L) ∈ C1((−L, 0)∪(0, L)), we have that lims→0h
′(s) = lims→0

h(s)−h(0)
s

= h′
+(0), and, similarly, lims→0h

′(−s) = h′
−(0), lims→0h

′(L − s) =
h′
−(L), lims→0h

′(−L + s) = h′
−(L). Hence, h′ ∈ C([−L,L]), and h′ is

symmetric by the fact that h(x) = −h(−x), and, therefore, h′(x) =
h′(−x), for x ∈ (−L, 0) ∪ (0, L), and, automatically, h′(L) = h′(−L),
h′(0) = h′(−0), as these points are fixed.

Let h ∈ C([−L,L]) be symmetric, satisfying (∗∗). By L’Hopital’s
rule, and the fact that h|(−L,0)∪(0,L) ∈ C1((−L, 0)∪(0, L)), we have that

lims→0h
′(s) = lims→0

h(s)−h(0)
s

= h′
+(0) = 0 = h′

−(0) = lims→0
h(0)−h(−s)

s
=

lims→0h
′(−s) and, similarly, lims→0h

′(L− s) = h′
−(L), lims→0h

′(−L+
s) = h′

−(L). Hence, h′ ∈ C([−L,L]), and h′ is symmetric by the fact
that h(x) = h(−x), and, therefore, h′(x) = −h′(−x), for x ∈ (−L, 0)∪
(0, L), and, automatically, h′(L) = h′(−L) = 0, h′(0) = h′(−0) = 0, as
these points are fixed.

�

Lemma 0.3. Let f ∈ C2([0, L]), such that f(0) = f(L) = 0 and
f ′′
+(0) = f ′′

+(L) = 0, (∗), then there exists h ∈ C2([−L,L]), (with
endpoints identified), such that h|[0,L] = f , h is asymmetric about 0, and
h′ is symmetric about 0. Let f ∈ C2([0, L]), such that f(0) = f(L) = 0
and f ′

+(0) = f ′
−(L) = 0, (∗∗), then there exists h ∈ C2([−L,L]), (with

endpoints identified), such that h|[0,L] = f , h is symmetric about 0, and
h′ is asymmetric about 0.

Proof. Suppose that f satisfies (∗) and let h(x) = f(x), for x ∈
[0, L], and h(x) = −f(−x), for x ∈ [−L, 0). Then clearly h is asym-
metric about 0, h(0) = h(L) = h(−L) = 0, and h ∈ C([−L,L]).
Moreover, h|(−L,0)∪(0,L) ∈ C1((−L, 0) ∪ (0, L)), as f ∈ C1([0, L]). By
Lemma 0.2, we have that h′ ∈ C([−L,L]), and h′ is symmetric. More-
over, h′|(−L,0)∪(0,L) ∈ C1((−L, 0) ∪ (0, L)), as f ∈ C2([0, L]) and f ′ ∈

3
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C1([0, L]). We have that;

(h′)′+(−L) = lims→0+
h′(−L+s)−h′(−L)

s

= lims→0
h′(L−s)−h′(L)

s
(by asymmetry)

= −lims→0
h′(L)−h′(L−s)

s

= −lims→0
f ′(L)−f ′(L−s)

s
= −f ′′

+(L) = 0

and;

(h′)′−(L) = lims→0+
h′(L)−h′(L−s)

s

= lims→0
h′
−(L)−f ′(L−s)

s

= lims→0
f ′
−(L)−f ′(L−s)

s

= lims→0
f ′(L)−f ′(L−s)

s
= f ′′

+(L) = 0

Similarly, (h′)′+(0) = f ′′
+(0) = 0, (h′)′−(0) = −f ′′

+(0) = 0

Applying Lemma 0.2 again, we obtain that (h′)′ ∈ C[−L,L], hence
h ∈ C2([−L,L]).

Suppose that f satisfies (∗∗) and let h(x) = f(x), for x ∈ [0, L],
h(x) = f(−x), for x ∈ [−L, 0). Then h is symmetric and h|(−L,0)∪(0,L) ∈
C1((−L, 0) ∪ (0, L)). Moreover;

h′
+(−L) = lims→0

h(−L+s)−h(−L)
s

= lims→0
h(L−s)−h(L)

s

= lims→0
f(L−s)−f(L)

s

= −lims→0
f(L)−f(L−s)

s

= −f ′
−(L) = 0

Similarly, h′
−(L) = f ′

−(L) = 0, h′
+(0) = f ′

+(0) = 0, and h′
−(0) =

−f ′
+(0) = 0. Again, applying Lemma 0.2, we obtain that h′ ∈ C([−L,L])
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is asymmetric. We have that h′|(−L,0)∪(0,L) ∈ C1((−L, 0) ∪ (0, L)), as
f ∈ C2([0, L]) and f ′ ∈ C1([0, L]). Applying Lemma 0.2, we obtain
that (h′)′ ∈ C[−L,L], hence h ∈ C2([−L,L]).

�

Lemma 0.4. Let f ∈ C4([0, L]), such that f(0) = f(L) = 0 and

f
(2)
+ (0) = f

(2)
+ (L) = 0, f

(4)
+ (0) = f

(4)
+ (L) = 0, (∗), then there exists h ∈

C4([−L,L]), (with endpoints identified), such that h|[0,L] = f , {h, h(2)}
are asymmetric about 0, and {h(1), h(3)} are symmetric about 0. Let

f ∈ C4([0, L]), such that f(0) = f(L) = 0 and f
(1)
+ (0) = f

(1)
+ (L) = 0,

f
(3)
+ (0) = f

(3)
+ (L) = 0, (∗∗), then there exists h ∈ C4([−L,L]), (with

endpoints identified), such that h|[0,L] = f , {h, h(2)} are symmetric

about 0, and {h(1), h(3)} are asymmetric about 0.

Proof. For the first part, let h be defined as in 0.3, then h ∈ C2([−L,L]),
(with endpoints identified), h|[0,L] = f , h is asymmetric about 0 and

h(1) is symmetric about 0. We have that f (2) ∈ C2([0, L]), f
(2)
+ (0) =

f
(2)
+ (L) = 0, and f

(4)
+ (0) = f

(4)
+ (L) = 0, so f (2) satisfies the hypothe-

ses of Lemma 0.3. Moreover, h(2)(x) = f (2)(x), for x ∈ [0, L], and
h(2)(−x) = −f (2)(−x), for x ∈ [−L, 0). Then, by the result of 0.3, we
have that h(2) ∈ C2([−L,L]), (with endpoints identified), h(2) is asym-
metric about 0 and h(3) is symmetric about 0. Hence h ∈ C4([−L,L]),
and the remaining claims are clear. The proof of the second part of the
lemma follows the same strategy.

�

Lemma 0.5. Let f ∈ C∞
0 ([0, L]), then there exists {f1, f2} ⊂ C∞

0 ([0, L]),
with f ′

1,+(0) = f ′
1,+(L) = 0, f ′′

2,+(0) = f ′′
2,+(L) = 0, such that f =

f1 + f2.

Proof. Consider the equations g(0) = g(L) = 0, g′(0) = g′(L) = 0,
g′′(0) = f ′′

+(0) and g′′(L) = f ′′
−(L), (∗) on the space V6 = {g ∈ R[x] :

deg(g) = 5}. Let T : V6 → R6 be given by;

T (g) = (g(0), g(L), g′(0), g′(L), g′′(0), g′′(L))

We have that Ker(T ) = 0, as if T (g) = 0, then, clearly g(x) =
dx3 + ex4 + fx5, with {d, e, f} ⊂ R, then, g′(x) = 3dx2 + 4ex3 + 5fx4,
g′′(x) = 6dx+12ex2+20fx3, and we have that g(L) = g′(L) = g′′(L) =
0, iff;

5
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A �

d
e
f

 =

0
0
0

 , A =

1 L L2

3 4L 5L2

6 12L 20L2


We have that det(A) = 2L3 ̸= 0, hence, d = e = f = 0, as

required. Then, T is onto, by the rank-nullity theorem, hence, we
can find a solution to (∗), corresponding to T (g) = v1, where v1 =
(0, 0, 0, 0, f ′′(0), f ′′(L)). Let f1 be the unique polynomial in V5, satisfy-
ing these conditions, and let f2 = f −f1. It is now a simple calculation
to see that {f1, f2} satisfy the required conditions. �

Lemma 0.6. Let f ∈ C∞
0 ([0, L]), and n ∈ Z≥1, then there exists

{f1, f2} ⊂ C∞
0 ([0, L]), with f

(2j−1)
1,+ (0) = f

(2j−1)
1,− (L) = 0, f

(2j)
1,+ (0) =

f
(2j)
1,− (L) = 0, for 1 ≤ j ≤ n, such that f = f1 + f2.

Proof. Consider the equations g(0) = g(L) = 0, g(2j−1)(0) = g(2j−1)(L) =

0, and g(2j)(0) = f
(2j)
+ (0), g(2j)(L) = f

(2j)
− (L), for 1 ≤ j ≤ n, (∗), on

the space V2(2n+1) = {g ∈ R[x] : deg(g) = 4n + 1}. Let T : V2(2n+1) →
R2(2n+1) be given by;

(T (g))1 = g(0)

(T (g))2 = g(L)

(T (g))1+2j = g(j)(0)

(T (g))2+2j = g((j))(L) (1 ≤ j ≤ 2n)

We have that Ker(T ) = 0, as if T (g) = 0, then, using the fact that
g(0) = 0, g(j)(0) = 0, for 1 ≤ j ≤ 2n, we have g(x) =

∑4n+1
i=2n+1 aix

i,
with ai ∈ R, for 2n+ 1 ≤ i ≤ 4n+ 1. Then, for 1 ≤ j ≤ 2n;

g(j)(x) =
∑4n+1

i=2n+1
i!

(i−j)!
aix

i−j

and we have that g(L) = 0, g(j)(L) = 0, for 1 ≤ j ≤ 2n iff;

6
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A�



a2n+1

�
�

a2n+i

�
�

a4n+1


=



0
�
�
0
�
�
0


, A =



1 � � Li−1 � � L2n−1

� � � � � � �
� � � � � � �

(2n+1)!
(2n+2−j)!

� � (2n+i)!Li−1

(2n+1+i−j)!
� � (4n+1)!L2n−1

(4n+1−j)!

� � � � � � �
� � � � � � �

(2n+1)!
2!

� � (2n+i)!Li−1

(i+1)!
� � (4n)!L2n−1

(2n+1)!


for 1 ≤ i, j ≤ 2n.

We have that det(A) = cLn(2n−1) ̸= 0, (work out c) hence, ai = 0,
for 2n + 1 ≤ i ≤ 4n + 1, as required. Then, T is onto, by the rank-
nullity theorem, hence, we can find a solution to (∗), corresponding to
T (g) = v1, where;

(v1)j = 0, 1 ≤ j ≤ 2

(v1)j = 0, (j = 4k − 1, j = 4k, 1 ≤ k ≤ n)

(v1)j = f
(2k)
− (0), (j = 4k + 1, 1 ≤ k ≤ n)

(v1)j = f
(2k)
− (L), (j = 4k + 2, 1 ≤ k ≤ n)

Let f1 be the unique polynomial in V2(2n+1), satisfying these condi-
tions, and let f2 = f − f1. It is now a simple calculation to see that
{f1, f2} satisfy the required conditions. �

Lemma 0.7. Let f ∈ C∞
0 ([0, L]), then, for all ϵ > 0, there exists

g ∈ C2([−L,L]), such that;

g|[ϵ,L−ϵ) = f |[ϵ,L−ϵ).

Proof. By Lemma 0.5, we can find {f1, f2} ⊂ C∞
0 ([0, L]), with f ′

1,+(0) =
f ′
1,+(L) = 0, f ′′

2,+(0) = f ′′
2,+(L) = 0, such that f = f1 + f2. By Lemma

0.3, we can find {g1, g2} ⊂ C2
0([0, L]), with g1|[0,L] = f1, g2|[0,L] = f2

and g1 symmetric, g2 asymmetric. Let g = g1+ g2, then g ∈ C2
0([0, L]),

and g|[ϵ,L−ϵ) = f |[ϵ,L−ϵ). �

Lemma 0.8. Let f ∈ C∞
0 ([0, L]), then, for all ϵ > 0, there exists

g ∈ C4([−L,L]), such that;

7
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g|[ϵ,L−ϵ) = f |[ϵ,L−ϵ).

Proof. By Lemma 0.6, we can find {f1, f2} ⊂ C∞
0 ([0, L]), with f

(1)
1,+(0) =

f
(1)
1,−(L) = 0, f

(3)
1,+(0) = f

(3)
1,−(L) = 0, f

(2)
2,+(0) = f

(2)
2,−(L) = 0, f

(4)
2,+(0) =

f
(4)
2,−(L) = 0 such that f = f1 + f2. By Lemma 0.4, we can find
{g1, g2} ⊂ C4

0([−L,L]), with g1|[0,L] = f1, g2|[0,L] = f2 and g1 sym-
metric, g2 asymmetric. Let g = g1 + g2, then g ∈ C4

0([−L,L]), and
g|[ϵ,L−ϵ) = f |[ϵ,L−ϵ). �

Lemma 0.9. Let F ∈ C2([0, L]×R), such that F (0, t) = F (L, t) = 0,
for all t ∈ R, and let F ′′

t,+(0) = F ′′
t,+(L) = 0, (∗), then there exists

H ∈ C2([−L,L]×R), (with endfaces identified), such that H|[0,L]×R =

F , H is asymmetric about 0, and ∂H
∂x

is symmetric about 0. Let F ∈
C2([0, L]×R), such that F (0) = F (L) = 0 and F ′

t,+(0) = f ′
t,−(L) = 0,

(∗∗), then there exists H ∈ C2([−L,L]×R), (with endfaces identified),
such that H|[0,L]×R = F , H is symmetric about 0, and ∂H

∂x
is asymmetric

about 0.

Proof. Suppose that F satisfies (∗) and letH(x, t) = F (x, t), for (x, t) ∈
[0, L] × R, and H(x, t) = −F (−x, t), for (x, t) ∈ [−L, 0) × R, (∗ ∗
∗). Using the result of Lemma 0.3, we have, for t ∈ R, that Ht ∈
C2([−L,L]), (∗∗∗∗),Ht|[0,L] = Ft, (∗∗∗∗∗∗∗),Ht is asymmetric about 0,
(†), and H ′

t is symmetric about 0, (††). Let r2 ∈ C([0, L]×R) be given,

as in Definition 0.1, for F , so that r2|(0,L)×R = ∂2H
∂x2 |(0,L)×R, (∗ ∗ ∗ ∗ ∗∗),

and let r2,l ∈ C([−L, 0] × R) be given by r2,l(x, t) = −r2(−x, t), for

(x, t) ∈ [−L, 0]×R, so that r2,l|(−L,0)×R = ∂2H
∂x2 |(−L,0)×R, (∗ ∗ ∗ ∗ ∗). Let

R2 be defined by R2(x, t) = r2(x, t), if (x, t) ∈ [0, L]×R, and R2(x, t) =
r2,l(x, t), if (x, t) ∈ [−L, 0]×R. Then R2,t|[−L,L] = Ht, hence, by (∗∗∗∗),
in fact, R2 ∈ C([−L,L] ×R), and, by (∗ ∗ ∗), (∗ ∗ ∗ ∗ ∗), (∗ ∗ ∗ ∗ ∗∗),
R2|((−L,0)∪(0,L))×R = ∂2H

∂x2 . It follows that H ∈ C2([−L,L] × R) (with
endpoints identified). By (∗ ∗ ∗ ∗ ∗ ∗ ∗), we obtain immediately that
H|[0,L]×R = F . The fact that H is asymmetric about 0, is obvious, from
(†). In order to see the final claim, let r1 ∈ C([0, L] × R) be given,
as above, r1,l ∈ C([−L, 0]×R), be given by, r1,l(x, t) = r1(−x, t), and
R1 ∈ C([0, L]×R) be defined by R1(x, t) = r1(x, t), if (x, t) ∈ [0, L]×R,
and R1(x, t) = r1,l(x, t), if (x, t) ∈ [−L, 0] × R. It is easy to see, as
above, that R1 ∈ C([−L,L] × R) and R1|(−L,L)×R = ∂H

∂x
. Then, for

t ∈ R, R1,t|(−L,L) = (Ht)
′, so that, for t ∈ R, R1,t = r1,t, (†††), where

r1,t is given, as in Definition 0.1, for each Ht. Then, the fact that ∂H
∂x

is symmetric about 0, follows from the pointwise property (††), and,
8
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(†††). The second part of the lemma is the similar, following the proof
above �
Lemma 0.10. Let F ∈ C4([0, L]×R), such that F (0, t) = F (L, t) = 0,

for all t ∈ R, and let F
(2)
t,+(0) = F

(2)
t,+(L) = 0, F

(4)
t,+(0) = F

(4)
t,+(L) = 0

(∗), then there exists H ∈ C4([−L,L]×R), (with endfaces identified),

such that H|[0,L]×R = F , H, ∂
2H
∂x2 are asymmetric about 0, and ∂H

∂x
, ∂

3H
∂x3

are symmetric about 0. Let F ∈ C4([0, L] × R), such that F (0) =

F (L) = 0 and F
(1)
t,+(0) = F

(1)
t,−(L) = 0, F

(3)
t,+(0) = F

(3)
t,−(L) = 0 (∗∗),

then there exists H ∈ C4([−L,L]×R), (with endfaces identified), such

that H|[0,L]×R = F , H, ∂
2H
∂x2 are symmetric about 0, and ∂H

∂x
, ∂

3H
∂x3 are

asymmetric about 0.

Proof. For the first part, by Lemma 0.9, we can find H ∈ C2([−L,L]×
R), with H|[0,L]×R = F , H asymmetric about 0, and ∂H

∂x
symmetric

about 0. We have that ∂2F
∂x2 satisfies the conditions of Lemma 0.9, as,

by the assumptions, ∂2F
∂x2 ∈ C2([0, L] × R), ∂2F

∂x2 (0, t) = ∂2F
∂x2 (L, t) = 0

and (∂
2F

∂x2 )
(2)
t,+(0) = F

(4)
t,+(0) = F

(4)
t,−(L) = (∂

2F
∂x2 )

(2)
t,−(L) = 0, for all t ∈ R,

(3). Moreover, by definition of H, we have that ∂2H
∂x2 (x

′, t) = ∂2F
∂x2 (x

′, t),

for (x′, t) ∈ ([0, L] × R), and ∂2H
∂x2 (x

′, t) = −∂2F
∂x2 (−x′, t), for (x′, t) ∈

((−L, 0) ×R). Hence, by the conclusion of Lemma 0.9, we have that
∂2H
∂x2 ∈ C2([−L,L]), (with endfaces identified) ∂2H

∂x2 is symmetric about

0, and ∂3H
∂x3 is asymmetric about 0, as required.

�
Lemma 0.11. Let F ∈ C∞

0 ([0, L] × R), then there exists {F1, F2} ⊂
C∞

0 ([0, L] ×R), with F ′
1,t,+(0) = F ′

1,t,−(L) = 0, F ′′
2,t,+(0) = F ′′

2,t,−(L) =
0, such that F = F1 + F2.

Proof. This is just a uniform version of Lemma 0.5. Let;

v1,t = (0, 0, 0, 0, F ′′
t,+(0), F

′′
t,+(L)), p1,t = T−1(v1,t)

Then;

p1,t =
∑5

i=0 di(t)x
i

where the coefficients di(t) = λiF
′′
t,+(0) + µiF

′′
t,+(L)

3Here, we use the fact that, for t ∈ R, ((∂
2F

∂x2 )t)|(0,L) = (Ft)
(2)|(0,L),

so ((∂
2F

∂x2 )t)
(2)|(0,L) = (Ft)

(4)|(0,L), (∗), and, using Definition ??, the limits

(∂
2F

∂x2 )
(2)
t,+(0) = F

(4)
t,+(0) are recovered uniquely from the relation (∗)

9
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for fixed constants {λi, µi} ⊂ R, 0 ≤ i ≤ 5. Let r2 ∈ C∞
0 ([0, L]×R)

be given, as in Definition 0.1, and ϕ0(t) = r2(t, 0), ϕL(t) = r2(t, L),
then, clearly, {ϕ0, ϕL} ⊂ C∞(R), so clearly, we have that;

p1,t =
∑5

i=0(λiϕ0(t) + µiϕL(t))x
i

and p1,t ∈ C∞
0 ([0, L] ×R). Letting F1 = p1,t, and F2 = F − F1, we

obtain the result.
�

Lemma 0.12. Let F ∈ C∞
0 ([0, L] × R), then there exists {F1, F2} ⊂

C∞
0 ([0, L]×R), with F

(2j−1)
1,t,+ (0) = F

(2j−1)
1,t,− (L) = 0, F

(2j)
2,t,+(0) = F

(2j)
2,t,−(L) =

0, for 1 ≤ j ≤ n, such that F = F1 + F2.

Proof. This is just a uniform version of Lemma 0.6. Let v1,t be de-

fined as in Lemma 0.6, replacing {f (2k)
+ (0), f

(2k)
− (L) : 1 ≤ k ≤ n} by

{F (2k)
t,+ (0), F

(2k)
t,− (L) : 1 ≤ k ≤ n}, and, let p1,t = T−1(v1,t).

Then;

p1,t =
∑4n+1

i=0 di(t)x
i

where the coefficients di(t) =
∑n

k=1(λikF
(2k)
t,+ (0) + µikF

(2k)
t,− (L)

for fixed constants {λik, µik : 0 ≤ i ≤ 4n + 1, 1 ≤ k ≤ n} ⊂ R. Let
{r2k : 1 ≤ k ≤ n} ⊂ C∞

0 ([0, L]×R) be given, as in Definition 0.1, and
ϕ0,k(t) = r2k(t, 0), ϕL,k(t) = r2k(t, L), then, {ϕ0,k, ϕL,k : 1 ≤ k ≤ n} ⊂

10
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C∞(R), (4). We have that;

p1,t =
∑4n+1

i=0 (
∑n

k=1(λikϕ0,k(t) + µikϕL,k)x
i

and p1,t ∈ C∞
0 ([0, L] ×R). Letting F1 = p1,t, and F2 = F − F1, we

obtain the result.
�

Lemma 0.13. Let F ∈ C∞
0 ([0, L]×R), then, there exist {G1, G2, G} ⊂

C2([−L,L]×R), such that, for all ϵ > 0 ;

(i).G|[ϵ,L−ϵ)×R = F |[ϵ,L−ϵ)×R.

(ii). G1 is asymmetric and ∂G1

∂x
is symmetric about 0.

(iii). G2 is symmetric and ∂G2

∂x
is asymmetric about 0.

Proof. By Lemma 0.11, we can find {F1, F2} ⊂ C∞
0 ([0, L] × R), with

F ′
1,+(0) = F ′

1,+(L) = 0, F ′′
2,+(0) = F ′′

2,+(L) = 0, such that F = F1 + F2.

By Lemma 0.9, we can find {G1, G2} ⊂ C2
0([−L,L]), with G1|[0,L] = G1,

G1 asymmetric and ∂G1

∂x
symmetric about 0, and with G2|[0,L] = G2, G2

4We have that;

limh→0(
r2k(L,t+h)−r2k(L,t)

h ) = limh→0(limx→L(
r2k(x,t+h)−r2k(x,t)

h )), (∗)

As r2k ∈ C([−L,L]×R), for fixed h ̸= 0;

limx→L
r2k(x,t+h)−r2k(x,t)

h = r2k(L,t+h)−r2k(L,t)
h

For fixed x′ ̸= L;

limh→0
r2k(x

′,t+h)−r2k(x
′,t)

h = ∂2k+1F
∂x2k+1 (x

′, t)

and, moreover, the convergence is uniform for x′ ∈ (0, L), as ∂2k+1F
∂x2k+1 is bounded

on (0, L)× (t− ϵ, t+ ϵ), for any ϵ > 0. It follows that we can interchange the limits
in (∗), to obtain that;

limh→0(
r2k(L,t+h)−r2k(L,t)

h )

= limx→L(limh→0(
r2k(x,t+h)−r2k(x,t)

h ))

= limx′→L
∂2k+1F
∂x2k+1 (x

′, t) = r2k+1(L, t)

11
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symmetric and ∂G2

∂x
asymmetric about 0. Let G = G1 + G2, then

G ∈ C2
0([−L,L]×R), and G|[ϵ,L−ϵ)×R = F |[ϵ,L−ϵ)×R, as required. �

Lemma 0.14. Let F ∈ C∞
0 ([0, L]×R), then, there exist {G1, G2, G} ⊂

C4([−L,L]×R), such that, for all 0 ≤ ϵ < L
2
;

(i).G|[ϵ,L−ϵ)×R = F |[ϵ,L−ϵ)×R.

(ii). G1,
∂2G1

∂x2 are asymmetric and ∂G1

∂x
, ∂

3G1

∂x3 are symmetric about 0.

(iii). G2,
∂2G2

∂x2 are symmetric and ∂G2

∂x
, ∂

3G2

∂x3 are asymmetric about 0.

Proof. By Lemma 0.12, we can find {F1, F2} ⊂ C∞
0 ([0, L] × R), with

F
(1)
1,+(0) = F

(1)
1,−(L) = 0, F

(3)
1,+(0) = F

(3)
1,−(L) = 0, F

(2)
2,+(0) = F

(2)
2,−(L) = 0,

F
(4)
2,+(0) = F

(4)
2,−(L) = 0, such that F = F1+F2. By Lemma 0.10, we can

find {G1, G2} ⊂ C4
0([−L,L]), with G1|[0,L] = F1, G1,

∂2G1

∂x2 asymmetric

and ∂G1

∂x
, ∂

3G1

∂x3 symmetric about 0, G2|[0,L] = F2, G2,
∂2G2

∂x2 symmetric and
∂G2

∂x
, ∂

3G2

∂x3 asymmetric about 0 Let G = G1+G2, then G ∈ C4
0([−L,L]×

R), and G|[ϵ,L−ϵ)×R = F |[ϵ,L−ϵ)×R, as required. �

Lemma 0.15. Let F ∈ C∞
0 ([0, L]×R) be a solution to the wave equa-

tion, then, for all t ∈ R

limϵ→0
∂2F
∂x2 |(ϵ,t) = 0

limϵ→0
∂2F
∂x2 (L− ϵ, t) = 0

Proof. Let {G1, G2, G} be given as in Lemma 0.14. Then, for all
t ∈ R, Gt ∈ C4([−L,L]), and, using [2], the Fourier series expan-

sion
∑

m∈Z cm(t)e
πixm

L of Gt converges uniformly to Gt on [−L,L], (5).

Similarly, as G
(n)
t ∈ C2([−L,L]), for 0 ≤ n ≤ 2, the Fourier series

expansion
∑

m∈Z cm(t)(
πim
L
)ne

πixm
L of G

(n)
t , converges uniformly to G

(n)
t

on [−L,L], for 0 ≤ n ≤ 2, (∗). We have that;

cm(t) =
1
2L

∫ L

−L
G(x, t)e−

πixm
L dx

Hence, as, for 0 ≤ n ≤ 4, t0 ∈ R, ∂nG
∂xn is bounded on [−L,L]× (t0 −

δ, t0+ δ), by the DCT, we have that cϵ,m ∈ C4(R). Moreover, we have,

5In fact, we only require that Gt ∈ C2([−L,L]), see also [3]
12
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for 0 ≤ n ≤ 4;

c
(n)
m (t) = 1

2L

∫ L

−L
∂nGϵ

∂tn
(x, t)e−

πixm
L dx

Hence, again, as ∂nGϵ,t

∂tn
∈ C2([−L,L]), for 0 ≤ n ≤ 2, the Fourier

series expansion
∑

m∈Z c
(n)
m (t)e

πixm
L of ∂nGt

∂tn
converges uniformly to ∂nGt

∂tn

on [−L,L], for 0 ≤ n ≤ 2 . Then;

∂2Gt

∂t2
=

∑
m∈Z c′′m(t)e

πixm
L

∂2Gt

∂x2 =
∑

m∈Z cm(t)(
πim
L
)2e

πixm
L = −

∑
m∈Z cm(t)(

π2m2

L2 )e
πixm

L

Using the facts that ∂2Gt

∂t2
= T

µ
∂2Gt

∂x2 , on (0, L), the series
∑

m∈Z [c
′′
m(t)+

cm(t)(
π2m2T
µL2 )]e

πixm
L is analytic on [−L,L], and {eπixm

L : m ∈ Z} are or-

thogonal on [−L,L], we obtain that;

c′′m(t) + cm(t)(
π2m2T
µL2 ) = 0 (t ∈ R)

cm(t) = Ame
iπm

√
Tt

L
√

µ +Bme
− iπm

√
Tt

L
√

µ

with {Am, Bm} ⊂ C, Am = am + ia′m, Bm = bm + ib′m and;

G =
∑

m∈Z Ame
iπm

√
Tt

L
√
µ e

πixm
L +

∑
m∈Z Bme

− iπm
√

Tt
L
√

µ e
πixm

L

Then ∂2G
∂x2 = −[

∑
m∈Z Am

π2m2

L2 e
iπm

√
Tt

L
√

µ e
πixm

L +
∑

m∈Z Bm
π2m2

L2 e
− iπm

√
Tt

L
√
µ e

πixm
L ]

= −
∑

m∈Z ̸=0
(am + bm)

π2m2

L2 cos(πxm
L

)cos(πm
√
Tt

L
√
µ
) + θ(x, t) = St

where θ(0, 0) = θ(L, 0) = 0

We have that;

|(am + bm)| = 1
2L
|
∫ L

−L
G0(x)cos(

πxm
L

)dx|

≤ Ln−1

2πnmn

∫ L

−L
|G(n)

0 |dx ≤ C0,n

mn , for 0 ≤ n ≤ 4

where C0,n =
Ln−1||G(n)

0 ||L1(−L,L)

2πn .

Then;

13
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|∂2G0

∂x2 |(0) = S0 ≤
∑

m∈Z̸=0
|am + bm|(π

2m2

L2 )

≤
∑

1≤|m|≤k−1 |am + bm|(π
2m2

L2 ) +
∑

|m|≥k
C0,n

mn (π
2m2

L2 )

=
∑

1≤|m|≤k−1 |am + bm|((π
2m2

L2 ) +
∑

|m|≥k

Ln−3||G(n)
0 ||L1(−L,L)

2πn−2mn−2

Taking n = 4, we obtain;

S0 ≤
∑

1≤|m|≤k−1 |am + bm|(π
2m2

L2 ) +
∑

|m|≥k
L

2π2m2 ||G(4)
0 ||L1(−L,L)

≤
∑

1≤|m|≤k−1 |am + bm|(π
2m2

L2 ) + L
2π2(k−1)

||G(4)
0 ||L1(−L,L), (∗∗)

We have, by conditions (i), (ii) of Lemma 0.14 and the FTC, that,
for all 0 < ϵ < L;

|am + bm| ≤ 1
L

∫ ϵ

−ϵ
|G0(x)|dx+

∫ −L+ϵ

L−ϵ
|G0(x)|dx

≤ 1
L
(|G0(ϵ)|+ |G0(−ϵ)|+ |G0(L− ϵ)|+ |G0(−L+ ϵ)|)

= 1
L
(|F0(ϵ)|+ |G1,0(−ϵ)|+ |G2,0(−ϵ)|+ |F0(L− ϵ)|+ |G1,0(−L+ ϵ)|

+|G2,0(−L+ ϵ)|)

≤ 2L2

π2(k−1)
( δ

′

2
)

for sufficiently small ϵ(k, δ′), as F0 ∈ C0([0, L]) and {G1,0, G2,0} ⊂

C0([−L,L]). Taking k ≥ 4L||G(4)
0 ||L1(−L,L)+1

π2δ′
, we then have that |S0| < δ′.

Then, using condition (i) of Lemma 0.14, and the fact that ∂2G0

∂x2 is

continuous at 0, we obtain that limϵ→0
∂2F0

∂x2 (ϵ) = 0 as required. In a
similar way, using an expansion around an arbitrary t0 ∈ R, we obtain

that limϵ→0
∂2Ft0

∂x2 (ϵ) = 0, as required. By exactly the same method, we

obtain that limϵ→0
∂2Ft0

∂x2 (L− ϵ) = 0. �

Lemma 0.16. Let F ∈ C∞
0 ([0, L]×R be a solution to the wave equa-

tion. Then, the Fourier series expansion of F is given by;∑
m∈Z>0

Kmcos(
πm

√
Tt

L
√
µ
)sin(πxm

L
) + Lmsin(

πm
√
Tt

L
√
µ
)sin(πxm

L
)

which converges uniformly to F on [0, L].
14
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Proof. By Lemma 0.15, we have that, for t ∈ R, limϵ→0
∂2Ft

x2 (ϵ) =

limϵ→0
∂2Ft

x2 (L− ϵ) = 0. Using the fact;

limϵ→0
∂2G1,t

x2 (ϵ) = limϵ→0
∂2G1,t

x2 (L− ϵ) = 0

from Lemma 0.14, we obtain that;

limϵ→0
∂2G2,t

x2 (ϵ) = limϵ→0
∂2G2,t

x2 (L− ϵ) = 0

Using Lemma 0.3 of [1], we obtain that;

limϵ→0
∂4G2,t

x4 (ϵ) = limϵ→0
∂4G2,t

x4 (L− ϵ) = 0

Hence, by Definition of G2 in 0.12,0.14, we obtain that G2 = 0. It
follows that there exists G1 ∈ C4

0([−L,L] × R), with G1 asymmetric
about 0, such that G1|[0,L] = F .

Let h ∈ C4
0([−L,L]) be an asymmetric function, and let;

h(x) =
∑

m∈Z ĥ(m)e
πixm

L be the Fourier series expansion of h, with;

ĥ(m) = 1
2L

∫ L

−L
h(x)e

−πixm
L , for m ∈ Z

We have that;

ĥ(m) = 1
2L

∫ L

−L
h(x)cos(πxm

L
)dx− i

2L

∫ L

−L
h(x)sin(πxm

L
)dx

= −i
2L

∫ L

−L
h(x)sin(πxm

L
)dx = −i

L

∫ L

0
f(x)sin(πxm

L
) = iem

with em = −e−m, for m ≥ 0, so e0 = 0. Then;

h(x) = −
∑

m∈Z>0
2emsin(

πxm
L

)

Then writing;

G1(t, x) =
∑

m∈Z>0
fm(t)sin(

πxm
L

)

and substituting into (∗) of Definition 0.1, justified by the method
of Lemma 0.15 and the fact that G1 ∈ C4([−L,L]×R), we have that;

15
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m∈Z>0

f ′′
m(t)sin(

πxm
L

) = −T
µ
(
∑

m∈Z fm(t)(
πm
L
)2sin(πxm

L
))

Hence, f ′′
m(t) = −T

µ
fm(t)(

πm
L

2) = −π2m2T
L2µ

fm(t)

fm(t) = Kmcos(
πm

√
Tt

L
√
µ
) + Lmsin(

πm
√
Tt

L
√
µ
)

giving;

G1(t, x) =
∑

m∈Z>0
Kmcos(

πm
√
Tt

L
√
µ
)sin(πxm

L
)+Lmsin(

πm
√
Tt

L
√
µ
)sin(πxm

L
)

where the convergence is uniform on [−L,L]. Using the fact that
G1|[0,L] = F , by Lemma 0.11, we obtain that the series converges uni-
formly to F on [0, L] as required.

�
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