A NOTE ON CONVERGENCE OF FOURIER SERIES

TRISTRAM DE PIRO

ABSTRACT. We make some observations on the uniform convergence of Fourier series to symmetric and asymmetric functions.

Definition 0.1. Let $C^{\infty}(S^1)$ denote the smooth functions on [-1, 1], with endpoints identified. If $f \in C^{\infty}(S^1)$, we define $f^r \in C^{\infty}(S^1)$ by;

 $f^r(x) = f(-x)$

We say that $f \in C^{\infty}(S^1)$ is symmetric if f(x) = f(-x) for $x \in S^1$, with the convention that -1 = 1, and f is asymmetric if f(x) = -f(-x) for $x \in S^1$.

Lemma 0.2. If $f \in C^{\infty}(S^1)$, then $(f^r)^r = f$. If $g \in C^{\infty}(S^1)$, then $g^r = g$, iff g is symmetric, and $g^r = -g$ iff g is asymmetric. Moreover, $f + f^r$ is symmetric and $f - f^r$ is asymmetric.

Proof. We have that $(f^r)^r(x) = -(f^r)(-x) = -(-(f(-(-x)))) = f(x)$, (*). We have that $g^r = g$ iff $g(x) = g^r(x) = g(-x)$. Similarly, we have that $g^r = -g$ iff $g(x) = -g^r(x) = -g(-x)$, (**). $(f + f^r)^r = f^r + (f^r)^r = f + f^r$, by (*). $(f - f^r)^r = f^r - (f^r)^r = f^r - f = -(f - f^r)$, (**), again by (*). Hence, by (**), $f + f^r$ is symmetric and $f - f^r$ is asymmetric, as required. □

Lemma 0.3. $f \in C^{\infty}(S^1)$, then f is symmetric iff f' is asymmetric, moreover $f^{(2n+1)}(0) = f^{(2n+1)}(1) = f^{(2n+1)}(-1) = 0$, for $n \in \mathbb{Z}_{\geq 0}$, and f is asymmetric iff f' is symmetric, moreover $f^{(2n)}(0) = f^{(2n)}(1) = f^{(2n)}(-1) = 0$, for $n \in \mathbb{Z}_{\geq 0}$.

Suppose f is symmetric, then;

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(-x-h) - f(-x)}{h}$$
$$= -\lim_{h \to 0} \frac{(f(-x) - f(-x-h))}{h} = -f'(-x).$$

Conversely, suppose f' is asymmetric, then, using the FTC;

$$f(x) - f(-1) = \int_{-1}^{x} f'(y) dy = \int_{-1}^{x} -f'(-y) dy = \int_{1}^{-x} -f'(x)(-dx) dx = \int_{1}^{-x} f'(x) dx = -\int_{-x}^{1} f'(x) dx = -(f(1) - f(-x))$$

hence, f(x) = f(-x), as f(1) = f(-1). The second part is similar. For the last part, we have, if f is symmetric, then the odd derivatives f^{2n+1} , for $n \in \mathbb{Z}_{\geq 0}$ are antisymmetric. Hence, $f^{2n+1}(0) = -f^{2n+1}(0)$ and $f^{2n+1}(1) = -f^{2n+1}(-1) = -f^{2n+1}(1)$, therefore, $f^{2n+1}(0) = f^{2n+1}(1)$ $= f^{2n+1}(-1) = 0$. The last part, for f asymmetric, is the same.

Lemma 0.4. Let $f \in C^{\infty}(S^1)$ be symmetric, and let $g \in C^{\infty}(S^1)$ be antisymmetric, then the series;

$$\sum_{m \ge 0} a_m \cos(\pi x m)$$
where $a_m = \int_{-1}^1 f(x) \cos(\pi x m) dx, \ m \ge 1, \ a_0 = \frac{1}{2} \int_{-1}^1 f(x) dx$

$$\sum_{m \ge 1} b_m \sin(\pi x m)$$

where $b_m = \int_{-1}^{1} g(x) \sin(\pi x m) dx$, converge uniformly to f and g respectively on S^1 .

Moreover, if $h \in C^{\infty}(S^1)$, then the series;

$$\sum_{m>0} c_m \cos(\pi xm) + \sum_{m>1} d_m \sin(\pi xm)$$

where $c_m = \int_{-1}^{1} h(x) \cos(\pi x m) dx$, $m \ge 1$, $c_0 = \frac{1}{2} \int_{-1}^{1} h(x) dx$ and $d_m = \int_{-1}^{1} h(x) \sin(\pi x m) dx$, $m \ge 1$, converge uniformly to h on S^1 .

Proof. By the result of [1], if $h \in C^{\infty}(S^1)$, we have that the series;

 $\frac{1}{2}\sum_{m\in\mathcal{Z}}c_m e^{\pi xm}$

where $c_m = \int_{-1}^{1} h(x) e^{-\pi i x m} dx$

converges uniformly to h on S^1 . If f is symmetric, we have, for $m \ge 1$, $c_m = \int_{-1}^1 f(x) \cos(\pi x m) dx = a_m$, $c_{-m} = \int_{-1}^1 f(x) \cos(-\pi x m) dx = c_m = a_m$, $c_0 = \int_{-1}^1 d(x) dx = 2a_0$. Then;

$$f = \frac{1}{2} \sum_{m \ge 1} c_m (e^{\pi i x m} + e^{-\pi i x m}) + a_0 = \sum_{m \ge 1} a_m \cos(\pi x m)$$

If f is asymmetric, we have, for $m \ge 1$, $c_m = -i \int_{-1}^{1} f(x) \sin(\pi x m) dx = -ib_m$, $c_{-m} = i \int_{-1}^{1} f(x) \sin(\pi x m) dx = -c_m = ib_m$. Then;

$$f = \frac{1}{2} \sum_{m \ge 1} c_m (e^{\pi i x m} - e^{-\pi i x m}) = \sum_{m \ge 1} (b_m sin(\pi x m))$$

as required for the first part. For the second part, if $h \in C^{\infty}(S^1)$, then, using the Lemma 0.2, we have that;

$$\begin{split} h &= \frac{(h+h^r)+(h-h^r)}{2} = h^{sym} + h^{asym} \\ \text{with } h^{sym} &= \frac{h+h^r}{2} \text{ symmetric and } \frac{h-h^r}{2} \text{ asymmetric. By the first part;} \\ h^{sym} &= \sum_{m\geq 0} a_m cos(\pi xm) \\ \text{where for } m &\geq 1; \\ a_m &= \int_{-1}^{1} h^{sym}(x) cos(\pi xm) dx \\ &= \int_{-1}^{1} h(x) cos(\pi xm) dx \\ \text{as } \int_{-1}^{1} h(x) cos(\pi xm) dx = 0 \\ \text{and } a_0 &= \frac{1}{2} \int_{-1}^{1} h^{sym}(x) dx \\ &= \frac{1}{2} \int_{-1}^{1} h(x) dx \\ \text{as } \frac{1}{2} \int_{-1}^{1} h(x) dx \\ \text{as } \frac{1}{2} \int_{-1}^{1} hasym(x) dx = 0 \\ h^{asym} &= \sum_{m\geq 1} b_m sin(\pi xm) \\ \text{For } m &\geq 1; \\ b_m &= \int_{-1}^{1} (x) h^{asym}(x) sin(\pi xm) dx \\ &= \int_{-1}^{1} (x) h(x) sin(\pi xm) dx \\ \text{as } \int_{-1}^{1} (x) h(x) sin(\pi xm) dx = 0 \\ \text{It follows that;} \end{split}$$

 $h = h^{sym} + h^{asym}$

$$= \sum_{m \ge 0} a_m \cos(\pi xm) + \sum_{m \ge 1} b_m \sin(\pi xm)$$

and the series converge uniformly to h on S^1 , by the first result.

References

[1] A Simple Proof of the Uniform Convergence of Fourier Series Using Nonstandard Analysis, Tristram de Piro, (2012).