
A NOTE ON CONVERGENCE OF FOURIER SERIES

TRISTRAM DE PIRO

Abstract. We make some observations on the uniform conver-
gence of Fourier series to symmetric and asymmetric functions.

Definition 0.1. Let C∞(S1) denote the smooth functions on [−1, 1],
with endpoints identified. If f ∈ C∞(S1), we define f r ∈ C∞(S1) by;

f r(x) = f(−x)

We say that f ∈ C∞(S1) is symmetric if f(x) = f(−x) for x ∈
S1, with the convention that −1 = 1, and f is asymmetric if f(x) =
−f(−x) for x ∈ S1.

Lemma 0.2. If f ∈ C∞(S1), then (f r)r = f . If g ∈ C∞(S1), then
gr = g, iff g is symmetric, and gr = −g iff g is asymmetric. Moreover,
f + f r is symmetric and f − f r is asymmetric.

Proof. We have that (f r)r(x) = −(f r)(−x) = −(−(f(−(−x)))) =
f(x), (∗). We have that gr = g iff g(x) = gr(x) = g(−x). Similarly,
we have that gr = −g iff g(x) = −gr(x) = −g(−x), (∗∗). (f + f r)r =
f r+(f r)r = f+f r, by (∗). (f−f r)r = f r−(f r)r = f r−f = −(f−f r),
(∗∗), again by (∗). Hence, by (∗∗), f + f r is symmetric and f − f r is
asymmetric, as required. �

Lemma 0.3. f ∈ C∞(S1), then f is symmetric iff f ′ is asymmetric,
moreover f (2n+1)(0) = f (2n+1)(1) = f (2n+1)(−1) = 0, for n ∈ Z≥0, and
f is asymmetric iff f ′ is symmetric, moreover f (2n)(0) = f (2n)(1) =
f (2n)(−1) = 0, for n ∈ Z≥0.

Suppose f is symmetric, then;

f ′(x) = limh→0
f(x+h)−f(x)

h
= limh→0

f(−x−h)−f(−x)
h

= −limh→0
(f(−x)−f(−x−h))

h
= −f ′(−x).

Conversely, suppose f ′ is asymmetric, then, using the FTC;
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f(x)− f(−1) =
∫ x
−1 f

′(y)dy =
∫ x
−1−f

′(−y)dy =
∫ −x
1
−f ′(x)(−dx)

=
∫ −x
1

f ′(x)dx = −
∫ 1

−x f
′(x)dx = −(f(1)− f(−x))

hence, f(x) = f(−x), as f(1) = f(−1). The second part is similar.
For the last part, we have, if f is symmetric, then the odd derivatives
f 2n+1, for n ∈ Z≥0 are antisymmetric. Hence, f 2n+1(0) = −f 2n+1(0)
and f 2n+1(1) = −f 2n+1(−1) = −f 2n+1(1), therefore, f 2n+1(0) = f 2n+1(1)
= f 2n+1(−1) = 0. The last part, for f asymmetric, is the same.

Lemma 0.4. Let f ∈ C∞(S1) be symmetric, and let g ∈ C∞(S1) be
antisymmetric, then the series;∑

m≥0 amcos(πxm)

where am =
∫ 1

−1 f(x)cos(πxm)dx, m ≥ 1, a0 = 1
2

∫ 1

−1 f(x)dx∑
m≥1 bmsin(πxm)

where bm =
∫ 1

−1 g(x)sin(πxm)dx, converge uniformly to f and g re-

spectively on S1.

Moreover, if h ∈ C∞(S1), then the series;∑
m≥0 cmcos(πxm) +

∑
m≥1 dmsin(πxm)

where cm =
∫ 1

−1 h(x)cos(πxm)dx, m ≥ 1, c0 = 1
2

∫ 1

−1 h(x)dx and

dm =
∫ 1

−1 h(x)sin(πxm)dx, m ≥ 1, converge uniformly to h on S1.

Proof. By the result of [1], if h ∈ C∞(S1), we have that the series;

1
2

∑
m∈Z cme

πxm

where cm =
∫ 1

−1 h(x)e−πixmdx

converges uniformly to h on S1. If f is symmetric, we have, for m ≥
1, cm =

∫ 1

−1 f(x)cos(πxm)dx = am, c−m =
∫ 1

−1 f(x)cos(−πxm)dx =

cm = am, c0 =
∫ 1

−1 d(x)dx = 2a0. Then;

f = 1
2

∑
m≥1 cm(eπixm + e−πixm) + a0 =

∑
m≥1 amcos(πxm)
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If f is asymmetric, we have, form ≥ 1, cm = −i
∫ 1

−1 f(x)sin(πxm)dx =

−ibm, c−m = i
∫ 1

−1 f(x)sin(πxm)dx = −cm = ibm. Then;

f = 1
2

∑
m≥1 cm(eπixm − e−πixm) =

∑
m≥1(bmsin(πxm)

as required for the first part. For the second part, if h ∈ C∞(S1),
then, using the Lemma 0.2, we have that;

h = (h+hr)+(h−hr)
2

= hsym + hasym

with hsym = h+hr

2
symmetric and h−hr

2
asymmetric. By the first part;

hsym =
∑

m≥0 amcos(πxm)

where for m ≥ 1;

am =
∫ 1

−1 h
sym(x)cos(πxm)dx

=
∫ 1

−1 h(x)cos(πxm)dx

as
∫ 1

−1 h
asym(x)cos(πxm)dx = 0

and a0 = 1
2

∫ 1

−1 h
sym(x)dx

= 1
2

∫ 1

−1 h(x)dx

as 1
2

∫ 1

−1 hasym(x)dx = 0

hasym =
∑

m≥1 bmsin(πxm)

For m ≥ 1;

bm =
∫ 1

−1(x)hasym(x)sin(πxm)dx

=
∫ 1

−1(x)h(x)sin(πxm)dx

as
∫ 1

−1(x)hsym(x)sin(πxm)dx = 0

It follows that;
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h = hsym + hasym

=
∑

m≥0 amcos(πxm) +
∑

m≥1 bmsin(πxm)

and the series converge uniformly to h on S1, by the first result.
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