
AN APPLICATION OF FOURIER ANALYSIS TO
RIEMANN SUMS

TRISTRAM DE PIRO

Abstract. We develop a method for calculating Riemann sums
using Fourier analysis.

1. Poisson Summation Formula

Definition 1.1. If f ∈ L1(R), we define;

(f)∧(y) =
∫∞
−∞ f(x)e−2πixydx

(f)−(y) = f(−y)

(f)∨(y) =
∫∞
−∞ f(x)e2πixydx

and, if g ∈ L1([0, 1]), m ∈ Z, we define;

(g)∧(m) =
∫ 1

0
g(x)e−2πixmdx

Remarks 1.2. If f ∈ S(R), we have that;

f(x) =
∫∞
−∞(f)∧(y)e2πixydy, (x ∈ R)

and, if g ∈ C∞([0, 1]), (1), the series;∑
m∈Z(g)

∧(m)e2πixm

converges uniformly to g on [0, 1]. See [4],[2] and [3].

Also observe that (f)∨ = (f−)
∧ and (f)∧ = (f−)

∨.

Theorem 1.3. Let f ∈ S(R), and let;

1 By which we mean that g|(0,1) ∈ C∞(0, 1), and there exist {gk ∈ C[0, 1] : k ∈
Z≥0}, such that gk|(0,1) = g(k), and gk(0) = gk(1).
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g(y) =
∑

m∈Z f(y +m), (y ∈ [0, 1])

Then g ∈ C∞([0, 1]) and the series∑
m∈Z(f)

∧(m)e2πiym

converges uniformly to g on [0, 1].

In particular;∑
m∈Z f(m) =

∑
m∈Z(f)

∧(m)

Proof. Observe that, as f ∈ S(R), for y0 ∈ [0, 1], r ∈ Z≥0, n ≥ 2;∑
m∈Z |drf

dyr
|y0+m|

≤
∑

m∈Z
Cr,n

(1+|y0+m|n)

≤
∑

m∈Z
Cr,n

(1+|m|n)

≤ Cr,n + 2Cr,n

∑
m≥1

1
mn

≤ Cr,n + 2Cr,n(1 + [y
−n+1

−n+1
]∞1

= Cr,n(1 + 2(1 + 1
n−1

) ≤ 5Cr,n (∗)

where Cr,n = supw∈R(|w|n drf
dxr |w)

Suppose, inductively, that drg
dyr

|y0 =
∑

m∈Z
drf
dyr

|y0+m, for y0 ∈ [0, 1],

(2), then, using (∗), we have, for r ≥ 1, that;

dr+1g
dyr+1 | = d

dx
(
∑

m∈Z
drfm
dyr

) =
∑

m∈Z
dr+1fm
dyr+1

where fm(x) = f(x+m), for m ∈ Z. Moreover, for r ≥ 0;

drg
dyr

|0 =
∑

m∈Z
drfm
dyr

|0 =
∑

m∈Z
drfm
dyr

|1 = drg
dyr

|1

It follows that g ∈ C∞[0, 1]. Moreover, we have that, for n ∈ Z;

2Given drg
dyr , we interpret dr+1g

dyr+1 |0 = limh→0,+
1
h (

drg
dyr |h − drg

dyr |0)
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(g)∧(n) =
∫ 1

0
g(y)e−2πiyndx

=
∫ 1

0
(
∑

m∈Z f(y +m))e−2πiyndx

=
∫ 1

0
(
∑

m∈Z f(y +m))e−2πi(y+m)ndx

=
∫∞
−∞ f(y)e−2πiyndx = (f)∧(n)

Using Remark 1.2, the series;∑
m∈Z f̂(m)e2πiym

converges uniformly to g on [0, 1] as required.
�

Lemma 1.4. If h ∈ C2(R), and there exists C ∈ R, with;

supx∈R(|x|2|h(x)|, |x|2|h′(x)|, |x|2|h′′(x)|) ≤ C

then the Inversion theorem holds for h. That is (h)∧ ∈ L1(R) and;

h(x) =
∫
R(h)

∧(y)e2πixydy (x ∈ R)

Proof. The result follows from inspection of the proof in [2], see Remark
0.4.

�

Lemma 1.5. If h satisfies the conditions of Lemma 1.4, and f = (h)∨,
then (f)∧ = h.

Proof. As h satisfies the conditions of Lemma 1.4, so does h−, and,
therefore, the inversion theorem holds for h−. Then;

((h−)
∧)∨ = (((h−)

∧)∧)− = (h−)

therefore;

(((h−)
∧)∧) = h. As f = h∨ = (h−)

∧, we have that;

(f)∧ = (h−)
∧)∧ = h

�
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Lemma 1.6. Let f be given by Lemma 1.5. Then, if there exists
D ∈ R, with;

supx∈R(|x|4|h(x)|, |x|4|h′(x)|, |x|4|h′′(x)|) ≤ D

we have that f ∈ C2(R), and, moreover, there exists a constant
F ∈ R, such that;

supy∈R(|y|2|f(y)|, |y|2|f ′(y)|, |y|2|f ′′(y)|) ≤ F .

Proof. Letting E = ||h|[−1,1]||C[−1,1], we have that, for y ∈ R, |x| ≥ 1;

|h(x)e2πixy| = |h(x)| ≤ D
|x|4 ≤ D

|x|2

|2πixh(x)e2πixy| = 2π|x||h(x)| ≤ 2πD
|x|3 ≤ 2πD

|x|2

| − 4π2x2h(x)e2πixy| = 4π2|x|2|h(x)| ≤ 4π2D
|x|2 ≤ 4π2D

|x|2

and, for y ∈ R, |x| ≤ 1;

|x|2|h(x)e2πixy| ≤ |h(x)| ≤ E

|x|2|2πixh(x)e2πixy| ≤ 2π|h(x)| ≤ 2πE

|x|2| − 4π2x2h(x)e2πixy| ≤ 4π2|h(x)| ≤ 4π2E

Hence;

supx∈R{|x|2|h(x)e2πixy|, |x|2|2πixh(x)e2πixy|, |x|2|−4π2x2h(x)e2πixy|}

≤ 4π2max(D,E)

and {h(x)e2πixy, 2πixh(x)e2πixy,−4π2x2h(x)e2πixy} ⊂ C(R). It fol-
lows that, for y0 ∈ R, we can differentiate under the integral sign, to
obtain that {f(y0), f ′(y0), f

′′(y0)} are all defined. By the DCT, using
the fact that −4π2x2h(x) ∈ L1(R), we obtain that f ′′ ∈ C(R), hence,
f ∈ C2(R). Differentiating by parts, using the fact that;

{h, h′, h′′, xh, xh′, xh′′, x2h, x2h′, x2h′′} ⊂ (L1(R) ∩ C0(R))
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by the hypotheses of Lemma 1.4 and this Lemma, we have that;

(h′′)∨ = −4πy2(h)∨ = −4πy2f

(4πih′ + 2πixh′′)∨ = ((2πixh)′′)∨ = −4πy2(2πixh)∨ = −4πy2f ′

(8π2h+ 16π2xh′ + 4π2x2h′′)∨ = ((4π2x2h)′′)∨

= −4πy2(4π2x2h)∨ = −4πy2f ′′, (∗)

We have, by (∗), for |y| ≥ 1, that;

|f(y)| ≤ |(h′′)∨(y)|
4πy2

≤ ||h′′||L1(R)

4πy2
≤

2D
3
+2E′′

4πy2

|f ′(y)| ≤ |(4πih′+2πixh′′)∨(y)|
4πy2

≤ ||(4πih′+2πixh′′)||L1(R)

4πy2

≤ 2||h′||L1(R)+||xh′′||L1(R)

2y2

≤ 2( 2D
3
+2E′)+D+2E′′

2y2

|f ′′(y)| ≤ |(8π2h+16π2xh′+4π2x2h′′)∨(y)|
4πy2

≤ ||(8π2h+16π2xh′+4π2x2h′′)||L1(R)

4πy2

≤ 2π||h||L1(R)+4π||xh′||L1(R)+π||x2h′′||L1(R)

y2

≤ 2π(2D
3
+2E)+4π(D+2E′)+π(2D+2E′′)

y2

where E ′ = ||h′|[−1,1]||C[−1,1] and E ′′ = ||h′′|[−1,1]||C[−1,1]

For |y| ≤ 1, we have that;

|f(y)| ≤ ||h||L1(R) ≤ 2D
3
+ E

|f ′(y)| ≤ ||(2πixh)||L1(R) ≤ 2πD + 2E

|f ′′(y)| ≤ || − 4π2x2h||L1(R) ≤ 8π2D + 2E

Hence, we can take F = max(8π2D+2E, 22πD
3

+4πE+8πE ′+2πE ′′)
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�
Definition 1.7. Let f be given by satisfying the conditions of Lemmas
1.5 and 1.6, we let;

g(y) =
∑

m∈Z f(y +m), (y ∈ [0, 1])

Lemma 1.8. Let g be given by Definition 1.7, then g ∈ C2[0, 1].

Proof. Using Lemma 1.6 and Weierstrass’ M-test, we have that the se-
ries;∑

m∈Z f(y +m),
∑

m∈Z f ′(y +m),
∑

m∈Z f ′′(y +m)

are uniformly convergent on [0, 1]. It follows, that g ∈ C2(0, 1), and
clearly;

g′+(0) =
∑

m∈Z f ′(m) =
∑

m∈Z f ′(m+ 1) = g′−(1)

hence, g ∈ C2[0, 1].
�

Lemma 1.9. Let f ∈ L1(R), such that;

g(y) =
∑

m∈Z f(y +m)

is defined, for y ∈ [0, 1]. Then, if g ∈ C2[0, 1], we have that the series∑
m∈Z(f)

∧(m)e2πiym converges uniformly to g on [0, 1]. In particular;∑
m∈Z f(m) =

∑
m∈Z(f)

∧(m)

Proof. Following through the calculation in Theorem 1.3, we have that
g ∈ L1([0, 1]), and (g)∧(m) = (f)∧(m), for m ∈ Z. Using the result of
[3] or [4], we obtain the second part, the final claim is clear.

�
Lemma 1.10. Let f be given by satisfying the conditions of Lemmas
1.5 and 1.6, with respect to h, then;∑

m∈Z f(m) =
∑

m∈Z h(m)

Proof. Using Lemmas 1.5 and 1.6, we have that g ∈ C2[0, 1], where g
is defined by 1.8, and (f)∧(m) = h(m), for m ∈ Z. By Lemmas 1.8
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and 1.9, we have that;∑
m∈Z f(m) =

∑
m∈Z(f)

∧(m)

Hence;∑
m∈Z f(m) =

∑
m∈Z h(m)

as required.
�

Lemma 1.11. If s ∈ Z≥2, s even, then;∑∞
n=1

1
ns = (−1)

s+2
2 (2π)sBs

2(s!)

Proof. The proof of this result can be found in [4]. �

Definition 1.12. If s ∈ C, with Re(s) ≥ 4, and r ∈ Z≥1, we define;

hs,r(x) =
1
xs , (x ≥ r)

hs,r(x) =
(−1)s

xs = e−iπs

xs , (x ≤ −r)

Remarks 1.13. hs,r is symmetric, that is hs,r(x) = hs,r(−x), for |x| ≥
r.

Lemma 1.14. There exists a polynomial ps,r of degree 2r + 3 , with
the properties;

(i). ps,r is symmetric, that is ps,r(x) = ps,r(−x), for x ∈ R.

(ii). ps,r(n) =
1
ns , for 1 ≤ n ≤ r.

(iii). p
(k)
s,r (r) = h

(k),+
s,r (r), (0 ≤ k ≤ 2)

(iv). p
(k)
s,r (−r) = h

(k),−
s,r (−r), (0 ≤ k ≤ 2)

Proof. We let, for 1 ≤ j ≤ 1 + r, 1 ≤ k ≤ r;
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Ar =



1 1 . . . 1 . . . 1
1 22 . . . 22j . . . 22(r+1)

. . .
1 k2 . . . k2j . . . k2(r+1)

. . .
1 r2 . . . r2j . . . r2(r+1)

0 2r . . . 2jr2j−1 . . . 2(r + 1)r2r+1

0 2 . . . 2j(2j − 1)r2j−2 . . . 2(r + 1)(2r + 1)r2r



bs,r =



1−s

2−s

. . .
k−s

. . .
r−s

−sr−(1+s)

s(s+ 1)r−(2+s)


We have that det(Ar) ̸= 0, hence, we can solve the equationAr(as,r) =

bs,r. Let ps,r(x) =
∑r+1

j=0(as,r)(j+1)x
2j. We have, by construction, that

ps,r(−x) = ps,r(x), and p
(k)
s,r (r) = h

(k),+
s,r (r). As both ps,r and hs,r are

symmetric, we also have that, p
(k)
s,r (r) = h

(k),−
s,r (−r), as required.

�

Definition 1.15. We define;

gs,r(x) = hs,r(x), (if |x| ≥ r)

gs,r(x) = ps,r(x), (if |x| ≤ r)

Lemma 1.16. We have that gs,r ∈ C2(R), gs,r is symmetric, and,
moreover, the hypotheses of Lemmas 1.4 and 1.6 hold for gs,r.

Proof. The fact that gs,r ∈ C2(R) follows immediately from Conditions
(iii) and (iv) of Lemma 1.14. The symmetry condition is a consequence
of Condition (i). If x ≥ r, we have that;

|gs,r(x)| ≤ |x−Re(s)||x−Im(s)| ≤ |x|−4

Hence, as gs,r is symmetric, |gs,r(x)| ≤ |x|−4, for |x| ≥ r.
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If |x| ≤ r;

|gs,r(x)| = |ps,r(x)| ≤ r2r+2
∑r+1

j=0 |(as,r)(j+1)| ≤ r2r+2
√
r + 2||as,r||

It follows that supx∈R(|x|4|gs,r(x)|) ≤ max(1, r2r+6
√
r + 2||as,r||).

Similarly, as g′s,r(x) =
−s
xs+1 , g

′′
s (x) =

s(s+1)
xs+2 , |x| > r, then, if |x| > r, we

have that;

|g′s,r(x)| ≤ |s||x|−5

|g′′s,r(x)| ≤ |s||s− 1||x|−6

and, if |x| ≤ r;

|g′s,r(x)| = |p′s,r(x)| ≤ r2r+2(
∑r+1

j=1 |2j(as,r)(j+1)|) ≤ 2(r+1)r2r+2
√
r + 2||as,r||

|g′′s (x)| = |p′′s(x)| ≤ r2r+2(
∑r+1

j=1 |2j(2j−1)(as,r)(j+1)|) ≤ (2r+2)(2r+

1)r2r+2
√
r + 2||as||

so that;

supx∈R(|x|5|g′s,r(x)|) ≤ max(|s|, 2(r + 1)r2r+7
√
r + 2||as||)

supx∈R(|x|6|g′′s,r(x)|) ≤ max(|s||s−1|, (2r+2)(2r+1)r2r+8
√
r + 2||as||)

(∗)

It follows that Lemmas 1.4 and 1.6 holds for gs,r, with C = D =
max(|s||s− 1|, (2r + 2)(2r + 1)r2r+8

√
r + 2||as||.

�

Definition 1.17. We let fs,r(y) =
∫
R gs,r(x)e

2πixydx.

Rs,r,1 =
∑

n∈Z̸=0
(
∫∞
r

e2πinx

xs dx)

Rs,r,2 =
∑

n∈Z̸=0
(
∫∞
r

e−2πinx

xs dx)

Rs,r = Rs,r,1 +Rs,r,2

Ps,r,1 =
∑

n∈Z̸=0
(
∫ r

0
ps,r(x)e

2πinxdx)
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Ps,r,2 =
∑

n∈Z̸=0
(
∫ r

0
ps,r(x)e

−2πinxdx)

Ps,r = Ps,r,1 + Ps,r,2

Lemma 1.18. We have that fs,r is symmetric, and fs,r satisfies the
conclusions of Lemmas 1.5 and 1.6. Moreover;

fs,r(0) + Ps,r +Rs,r = ps,r(0) + 2
∑∞

n=1
1
ns

Proof. The second part follows immediately from Definition 1.17, and
Lemmas 1.16, 1.5 and 1.6. It follows that fs,r ∈ L1(R), and;

fs,r(−y) =
∫
R gs,r(x)e

−2πixydx

=
∫
R gs,r(−x)e2πixydx

=
∫
R gs,r(x)e

2πixydx

= fs,r(y)

Hence, fs,r is symmetric. By Lemma 1.10 , we have that;∑
n∈Z fs,r(n) =

∑
n∈Z gs,r(n)

As both fs,r and gs,r are symmetric, using Definition 1.15 and prop-
erty (ii) of Lemma 1.14, we obtain;

fs,r(0) + Ps,r +Rs,r

= fs,r(0) +
∑

n∈Z̸=0
fs,r(n)

= gs,r(0) + 2(
∑∞

n=1 gs,r(n))

= ps,r(0) + 2(
∑∞

n=1
1
ns )

�

Lemma 1.19. We have that;

|Rs,r| ≤ 2|s|2
3(Re(s)+1)rRe(s)+1
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Ps,r = ps,r(0) + ps,r(r) + 2
∑r−1

l=1 ps,r(l)− 2
∫ r

0
ps,r(x)dx

Proof. We have that;

Rs,r,1 =
∑

n∈Z̸=0

−1
2πinrs

+
∑

n∈Z ̸=0

s
2πin

∫∞
r

e2πinx

xs+1 dx

=
∑

n∈Z̸=0

−s
rs+1(2πin)2

+
∑

n∈Z ̸=0

s(s+1)
(2πin)2

∫∞
r

e2πinx

xs+2 dx

= 2s
4rs+1π2

∑∞
n=1

1
n2 +Ds,r,1

= s
2rs+1π2

π2

6
+Ds,r,1

= s
12rs+1 +Ds,r,1

where;

|Ds,r,1| ≤ |s(s+1)|Cs,r,1

4π2

∑
n∈Z ̸=0

1
n2 = |s(s+1)|Cs,r,1

12

and Cs,r,1 ≤
∫∞
r

1
|xs+2|dx

=
∫∞
r

dx
xRe(s)+2

= 1
(Re(s)+1)rRe(s)+1

It follows that;

|Rs,r,1| ≤ |s|
12rRe(s)+1 +

|s(s+1)|
12(Re(s)+1)rRe(s)+1

≤ |s|(Re(s)+1)

12(Re(s)+1)rRe(s)+1 +
|s(s+1)|

12(Re(s)+1)rRe(s)+1

= |s|(Re(s)+1)+|s(s+1)|
12(Re(s)+1)rRe(s)+1

≤ 2|s(s+1)|
12(Re(s)+1)rRe(s)+1

≤ |s|2
3(Re(s)+1)rRe(s)+1

Similarly, |Rs,r,2| ≤ |s|2
3(Re(s)+1)rRe(s)+1 , so that |Rs,r| ≤ 2|s|2

3(Re(s)+1)rRe(s)+1 .

We have that;
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Ps,r,1 =
∑

n∈Z̸=0
(
∫ r

0
ps,r(x)e

2πinxdx

=
∑

n∈Z̸=0
(
∑r−1

l=0

∫ l+1

l
ps,r(x)e

2πinxdx)

=
∑r−1

l=0 (
∑

n∈Z̸=0
(
∫ l+1

l
ps,r(x)e

2πinxdx))

=
∑r−1

l=0 (
∑

n∈Z̸=0
(
∫ 1

0
ps,r(x+ l)e2πin(x+l)dx))

=
∑r−1

l=0 (
∑

n∈Z̸=0
(
∫ 1

0
ps,r(x+ l)e2πinxdx))

=
∑r−1

l=0 (
∑

n∈Z̸=0
(pls,r)

∨(n))

=
∑r−1

l=0 (
∑

n∈Z(p
l
s,r)

∨(n)−
∫ 1

0
pls,rdx), (

3)

3If f ∈ (C[0, 1] ∩ C2(0, 1)), and there exist {a+,j , a−,j : 0 ≤ j ≤ 2} ⊂ C, with
limx→0+f

(j)(x) = a+,j and limx→1−f
(j)(x) = a−,j , (†), for 0 ≤ j ≤ 2, then a

classical result in the theory of Fourier series, says that;

limN→∞
∑N

n=−N (f)(∧)(n)e2πinx = f(x) (x ∈ (0, 1))

limN→∞
∑N

n=−N (f)(∧)(n) =
a+,0+a−,0

2

We give a simple proof of this result. First observe that there exists a polynomial
p ∈ C[x], with deg(p) = 5, such that p(j)(0) = 0 and p(j)(1) = a−,j − a+,j , for

0 ≤ j ≤ 2. This follows from the fact that we can find c ⊂ C3, such that M � c = a,
where a(j) = a−,j−1 − a+,j−1, for 1 ≤ j ≤ 3, and;

M =

1 1 1
3 4 5
6 12 20


as det(M) ̸= 0, and, setting p(x) =

∑2
k=0 ckx

3+k. We have that p+ f ∈ C2(S1),
in which case the result follows from [3]. Hence, it is sufficient to verify the result
for the powers {xk : 0 ≤ k ≤ 5}. We have that, for k ≥ 1, n ∈ Z ̸=0;∫ 1

0
xke−2πinxdx

[x
ke−2πinx

−2πin ]10 +
k

2πin

∫ 1

0
xk−1e−2πinxdx

−1
2πin + k

2πin

∫ 1

0
xk−1e−2πinxdx∫ 1

0
xke−2πinxdx

= −(
∑k

l=1
k!

(k−l+1)!(2πin)l
) +

∫ 1

0
e−2πinxdx

= −(
∑k

l=1
k!

(k−l+1)!(2πin)l
)
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=
∑r−1

l=0 (
pls,r(1)+pls,r(0)

2
−

∫ 1

0
pls,rdx)

=
∑r−1

l=0 (
ps,r(l+1)+ps,r(l)

2
−

∫ 1

0
ps,r(x+ l)dx)

=
∑r−1

l=0 (
ps,r(l+1)+ps,r(l)

2
−

∫ l+1

l
ps,r(x)dx)

= ps,r(0)+ps,r(r)

2
+
∑r−1

l=1 ps,r(l)−
∫ r

0
ps,r(x)dx

Similarly;

Ps,r,2 =
ps,r(0)+ps,r(r)

2
+
∑r−1

l=1 ps,r(l)−
∫ r

0
ps,r(x)dx

so that;

Ps,r = Ps,r,1 + Ps,r,2

limN→∞
∑N

n=−N (xk)∧(n)

= 1
k+1 − 2

∑k
l=1

∑∞
n=1

k!
(k−l+1)!(2πin)l

Case k = 1, we obtain Sk = 1
2

k = 2, Sk = 1
3 + 2.2

4π2 (
∑∞

n=1
1
n2 )

k = 3, Sk = 1
4 + 2.3

4π2 (
∑∞

n=1
1
n2 )

k = 4, Sk = 1
5 + 2.4

4π2 (
∑∞

n=1
1
n2 )− 2.24

16π4 (
∑∞

n=1
1
n4 )

k = 5, Sk = 1
6 + 2.5

4π2 (
∑∞

n=1
1
n2 )− 2.120

16π4 (
∑∞

n=1
1
n4 )

Using Lemma 1.11, we have that;∑∞
n=1

1
n2 = −π[cot(πz)z](2)|0

2.2! = −π.−4π
6.2.2! = π2

6∑∞
n=1

1
n4 = −π[cot(πz)z](4)|0

2.4! = −π.−48π3

90.2.4! = π4

90

S2 = 1
3 + 2.2

4π2 (
π2

6 ) = 1
3 + 1

6 = 1
2

S3 = 1
4 + 2.3

4π2
π2

6 = 1
4 + 1

4 = 1
2

S4 = 1
5 + 2.4

4π2
π2

6 − 2.24
16π4

π4

90 = 1
2

S5 = 1
6 + 2.5

4π2
π2

6 − 2.60
16π4

π4

90 = 1
2
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= ps,r(0) + ps,r(r) + 2
∑r−1

l=1 ps,r(l)− 2
∫ r

0
ps,r(x)dx

�

Lemma 1.20. If Re(s) ≥ 4, r ≥ 1, we have that;∑∞
n=r

1
ns

=
∫∞
r

dx
xs +

ps,r(r)

2
+ Rs,r

2

= 1
(s−1)rs−1 +

Rs,r

2
+ rs

2

If r ≥ 2;∑r−1
n=1

1
ns

=
∑r+1

j=0(as,r)j+1(
B2j+1(r)

2j+1
)

Proof. The first claim is just a simple rearrangement of the claim in
Lemma 1.18, using Lemma 1.19. We have that;∫∞

r
dx
xs = 1

(s−1)rs−1

and ps,r(r)

2
= rs

2
, by property (ii) in Lemma 1.14.

Moreover;∑r−1
n=1

1
ns

=
∑r−1

l=1 ps,r(l)

=
∑r−1

l=0

∑r+1
j=0(as,r)j+1l

2j

=
∑r+1

j=0(as,r)j+1(
∑r−1

l=0 l
2j)

=
∑r+1

j=0(as,r)j+1(
B2j+1(r)−B2j+1(0)

2j+1
)

=
∑r+1

j=0(as,r)j+1(
B2j+1(r)

2j+1
)

�

Remarks 1.21. Using Lemma 1.19, we have that limr→∞|Rs,r| = 0,
hence, Lemma 1.20 reduces the calculation of

∑∞
n=1

1
ns to a calculation
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involving Bernoulli polynomials. Moreover, letting As,r =
∑∞

n=r
1
ns , we

have that;∫∞
r

dx
|xs| ≤ |As,r| ≤

∫∞
r−1

dx
|xs|∫∞

r
dx

xRe(s) ≤ |As,r| ≤
∫∞
r−1

dx
|xs|

1
(Re(s)−1)rRe(s)−1 ≤ |As,r| ≤ 1

3(r−1)3

Observing that;

|s|2
3(Re(s)+1)rRe(s)+1 ≤ 1

(Re(s)−1)rRe(s)−1

if r ≥ |s|
√

(Re(s)−1)
3(Re(s)+1)

, we have that the estimate
∑r+1

j=0(as,r)j+1(
B2j+1(r)

2j+1
)+

1
(s−1)rs−1 + 1

2rs
improves upon

∑r+1
j=0(as,r)j+1(

B2j+1(r)

2j+1
), for sufficiently

large values of r. The coefficients (as,r)j, 1 ≤ j ≤ r+2 can be computed
using simple linear algebra. The computation of absolutely convergent
Riemann sums, and their differences, occurs in the evaluation of ζ(s),
for 0 < Re(s) < 1, it is well known that ζ(s) ̸= 0, for Re(s) ≥ 1.
It is hoped that the above method might lead to some progress in the
direction of solving the famous Riemann hypothesis, that, ζ(s) = 0 iff
Re(s) = 1

2
or s = −2w, for w ∈ Z≥1, see [1].
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