AN APPLICATION OF FOURIER ANALYSIS TO **RIEMANN SUMS**

TRISTRAM DE PIRO

ABSTRACT. We develop a method for calculating Riemann sums using Fourier analysis.

1. POISSON SUMMATION FORMULA

Definition 1.1. If $f \in L^1(\mathcal{R})$, we define;

$$\begin{split} (f)^{\wedge}(y) &= \int_{-\infty}^{\infty} f(x) e^{-2\pi i x y} dx \\ (f)_{-}(y) &= f(-y) \\ (f)^{\vee}(y) &= \int_{-\infty}^{\infty} f(x) e^{2\pi i x y} dx \\ and, \ if \ g \in L^{1}([0,1]), \ m \in \mathcal{Z}, \ we \ define; \\ (g)^{\wedge}(m) &= \int_{0}^{1} g(x) e^{-2\pi i x m} dx \end{split}$$

Remarks 1.2. If $f \in \mathcal{S}(\mathcal{R})$, we have that;

$$f(x) = \int_{-\infty}^{\infty} (f)^{\wedge}(y) e^{2\pi i x y} dy, \ (x \in \mathcal{R})$$

and, if $g \in C^{\infty}([0, 1]), \ (^{1}), \ the \ series;$
$$\sum_{m \in \mathcal{Z}} (g)^{\wedge}(m) e^{2\pi i x m}$$

converges uniformly to g on [0, 1]. See [4], [2] and [3].

Also observe that $(f)^{\vee} = (f_{-})^{\wedge}$ and $(f)^{\wedge} = (f_{-})^{\vee}$.

Theorem 1.3. Let $f \in \mathcal{S}(\mathcal{R})$, and let;

 $[\]begin{array}{c}
\hline 1 \text{ By which we mean that } g|_{(0,1)} \in C^{\infty}(0,1), \text{ and there exist } \{g_k \in C[0,1] : k \in \mathcal{Z}_{\geq 0}\}, \text{ such that } g_k|_{(0,1)} = g^{(k)}, \text{ and } g_k(0) = g_k(1). \\
1
\end{array}$

$$g(y) = \sum_{m \in \mathbb{Z}} f(y+m), (y \in [0,1])$$

Then $g \in C^{\infty}([0,1])$ and the series
 $\sum_{m \in \mathbb{Z}} (f)^{\wedge}(m) e^{2\pi i y m}$

converges uniformly to g on [0, 1].

In particular;

$$\sum_{m\in\mathcal{Z}}f(m)=\sum_{m\in\mathcal{Z}}(f)^{\wedge}(m)$$

Proof. Observe that, as $f \in \mathcal{S}(\mathcal{R})$, for $y_0 \in [0, 1]$, $r \in \mathbb{Z}_{\geq 0}$, $n \geq 2$;

$$\begin{split} \sum_{m \in \mathcal{Z}} \left| \frac{d^{r} f}{dy^{r}} \right|_{y_{0}+m} | \\ &\leq \sum_{m \in \mathcal{Z}} \frac{C_{r,n}}{(1+|y_{0}+m|^{n})} \\ &\leq \sum_{m \in \mathcal{Z}} \frac{C_{r,n}}{(1+|m|^{n})} \\ &\leq C_{r,n} + 2C_{r,n} \sum_{m \geq 1} \frac{1}{m^{n}} \\ &\leq C_{r,n} + 2C_{r,n} (1 + [\frac{y^{-n+1}}{-n+1}]_{1}^{\infty} \\ &= C_{r,n} (1 + 2(1 + \frac{1}{n-1}) \leq 5C_{r,n} \ (*) \\ &\text{where } C_{r,n} = sup_{w \in \mathcal{R}} (|w|^{n} \frac{d^{r} f}{dx^{r}}|_{w}) \end{split}$$

Suppose, inductively, that $\frac{d^r g}{dy^r}|_{y_0} = \sum_{m \in \mathbb{Z}} \frac{d^r f}{dy^r}|_{y_0+m}$, for $y_0 \in [0, 1]$, (²), then, using (*), we have, for $r \geq 1$, that;

$$\frac{d^{r+1}g}{dy^{r+1}} = \frac{d}{dx} \left(\sum_{m \in \mathcal{Z}} \frac{d^r f_m}{dy^r} \right) = \sum_{m \in \mathcal{Z}} \frac{d^{r+1} f_m}{dy^{r+1}}$$

where $f_m(x) = f(x+m)$, for $m \in \mathbb{Z}$. Moreover, for $r \ge 0$;

$$\frac{d^r g}{dy^r}|_0 = \sum_{m \in \mathcal{Z}} \frac{d^r f_m}{dy^r}|_0 = \sum_{m \in \mathcal{Z}} \frac{d^r f_m}{dy^r}|_1 = \frac{d^r g}{dy^r}|_1$$

It follows that $g \in C^{\infty}[0, 1]$. Moreover, we have that, for $n \in \mathbb{Z}$;

²Given $\frac{d^r g}{dy^r}$, we interpret $\frac{d^{r+1}g}{dy^{r+1}}|_0 = \lim_{h \to 0, +} \frac{1}{h} \left(\frac{d^r g}{dy^r}|_h - \frac{d^r g}{dy^r}|_0\right)$

 $\mathbf{2}$

$$(g)^{\wedge}(n) = \int_0^1 g(y) e^{-2\pi i y n} dx$$
$$= \int_0^1 (\sum_{m \in \mathcal{Z}} f(y+m)) e^{-2\pi i y n} dx$$
$$= \int_0^1 (\sum_{m \in \mathcal{Z}} f(y+m)) e^{-2\pi i (y+m) n} dx$$
$$= \int_{-\infty}^\infty f(y) e^{-2\pi i y n} dx = (f)^{\wedge}(n)$$

Using Remark 1.2, the series;

$$\sum_{m \in \mathcal{Z}} \hat{f}(m) e^{2\pi i y m}$$

converges uniformly to g on [0, 1] as required.

3

Lemma 1.4. If $h \in C^2(\mathcal{R})$, and there exists $C \in \mathcal{R}$, with;

$$sup_{x \in \mathcal{R}}(|x|^2 |h(x)|, |x|^2 |h'(x)|, |x|^2 |h''(x)|) \le C$$

then the Inversion theorem holds for h. That is $(h)^{\wedge} \in L^1(\mathcal{R})$ and;

$$h(x) = \int_{\mathcal{R}} (h)^{\wedge}(y) e^{2\pi i x y} dy \ (x \in \mathcal{R})$$

Proof. The result follows from inspection of the proof in [2], see Remark 0.4.

Lemma 1.5. If h satisfies the conditions of Lemma 1.4, and $f = (h)^{\vee}$, then $(f)^{\wedge} = h$.

Proof. As h satisfies the conditions of Lemma 1.4, so does h_{-} , and, therefore, the inversion theorem holds for h_{-} . Then;

$$((h_{-})^{\wedge})^{\vee} = (((h_{-})^{\wedge})^{\wedge})_{-} = (h_{-})$$

therefore;

$$(((h_-)^\wedge)^\wedge)=h.$$
 As $f=h^\vee=(h_-)^\wedge,$ we have that;
 $(f)^\wedge=(h_-)^\wedge)^\wedge=h$

Lemma 1.6. Let f be given by Lemma 1.5. Then, if there exists $D \in \mathcal{R}$, with;

$$\sup_{x \in \mathcal{R}} (|x|^4 |h(x)|, |x|^4 |h'(x)|, |x|^4 |h''(x)|) \le D$$

we have that $f \in C^2(\mathcal{R})$, and, moreover, there exists a constant $F \in \mathcal{R}$, such that;

$$\sup_{y \in \mathcal{R}} (|y|^2 |f(y)|, |y|^2 |f'(y)|, |y|^2 |f''(y)|) \le F.$$

Proof. Letting $E = ||h|_{[-1,1]}||_{C[-1,1]}$, we have that, for $y \in \mathcal{R}$, $|x| \ge 1$;

$$\begin{aligned} |h(x)e^{2\pi ixy}| &= |h(x)| \leq \frac{D}{|x|^4} \leq \frac{D}{|x|^2} \\ |2\pi ixh(x)e^{2\pi ixy}| &= 2\pi |x||h(x)| \leq \frac{2\pi D}{|x|^3} \leq \frac{2\pi D}{|x|^2} \\ |-4\pi^2 x^2 h(x)e^{2\pi ixy}| &= 4\pi^2 |x|^2 |h(x)| \leq \frac{4\pi^2 D}{|x|^2} \leq \frac{4\pi^2 D}{|x|^2} \\ \text{and, for } y \in \mathcal{R}, \ |x| \leq 1; \\ |x|^2 |h(x)e^{2\pi ixy}| \leq |h(x)| \leq E \\ |x|^2 |2\pi ixh(x)e^{2\pi ixy}| \leq 2\pi |h(x)| \leq 2\pi E \\ |x|^2 |-4\pi^2 x^2 h(x)e^{2\pi ixy}| \leq 4\pi^2 |h(x)| \leq 4\pi^2 E \end{aligned}$$

Hence;

$$sup_{x \in \mathcal{R}}\{|x|^2 | h(x)e^{2\pi i x y} |, |x|^2 | 2\pi i x h(x)e^{2\pi i x y} |, |x|^2 | -4\pi^2 x^2 h(x)e^{2\pi i x y} |\}$$

$$\leq 4\pi^2 max(D, E)$$

and $\{h(x)e^{2\pi ixy}, 2\pi ixh(x)e^{2\pi ixy}, -4\pi^2 x^2 h(x)e^{2\pi ixy}\} \subset C(\mathcal{R})$. It follows that, for $y_0 \in \mathcal{R}$, we can differentiate under the integral sign, to obtain that $\{f(y_0), f'(y_0), f''(y_0)\}$ are all defined. By the DCT, using the fact that $-4\pi^2 x^2 h(x) \in L^1(\mathcal{R})$, we obtain that $f'' \in C(\mathcal{R})$, hence, $f \in C^2(\mathcal{R})$. Differentiating by parts, using the fact that;

$$\{h, h', h'', xh, xh', xh'', x^2h, x^2h', x^2h''\} \subset (L^1(\mathcal{R}) \cap C_0(\mathcal{R}))$$

by the hypotheses of Lemma 1.4 and this Lemma, we have that;

$$\begin{aligned} (h'')^{\vee} &= -4\pi y^2 (h)^{\vee} = -4\pi y^2 f \\ (4\pi i h' + 2\pi i x h'')^{\vee} &= ((2\pi i x h)'')^{\vee} = -4\pi y^2 (2\pi i x h)^{\vee} = -4\pi y^2 f' \\ (8\pi^2 h + 16\pi^2 x h' + 4\pi^2 x^2 h'')^{\vee} &= ((4\pi^2 x^2 h)'')^{\vee} \\ &= -4\pi y^2 (4\pi^2 x^2 h)^{\vee} = -4\pi y^2 f'', \ (*) \end{aligned}$$

We have, by (*), for $|y| \ge 1$, that;

$$\begin{split} |f(y)| &\leq \frac{|(h'')^{\vee}(y)|}{4\pi y^2} \leq \frac{||h''||_{L^1(\mathcal{R})}}{4\pi y^2} \leq \frac{2D}{3} + 2E''}{4\pi y^2} \\ |f'(y)| &\leq \frac{|(4\pi ih' + 2\pi ixh'')^{\vee}(y)|}{4\pi y^2} \\ &\leq \frac{||(4\pi ih' + 2\pi ixh'')||_{L^1(\mathcal{R})}}{4\pi y^2} \\ &\leq \frac{2||h'||_{L^1(\mathcal{R})} + ||xh''||_{L^1(\mathcal{R})}}{2y^2} \\ &\leq \frac{2(\frac{2D}{3} + 2E') + D + 2E''}{2y^2} \\ |f''(y)| &\leq \frac{|(8\pi^2 h + 16\pi^2 xh' + 4\pi^2 x^2 h'')^{\vee}(y)|}{4\pi y^2} \\ &\leq \frac{||(8\pi^2 h + 16\pi^2 xh' + 4\pi^2 x^2 h'')||_{L^1(\mathcal{R})}}{4\pi y^2} \\ &\leq \frac{2\pi ||h||_{L^1(\mathcal{R})} + 4\pi ||xh'||_{L^1(\mathcal{R})} + \pi ||x^2 h''||_{L^1(\mathcal{R})}}{y^2} \\ &\leq \frac{2\pi (2\frac{D}{3} + 2E) + 4\pi (D + 2E') + \pi (2D + 2E'')}{y^2} \end{split}$$

where $E' = ||h'|_{[-1,1]}||_{C[-1,1]}$ and $E'' = ||h''|_{[-1,1]}||_{C[-1,1]}$

For $|y| \leq 1$, we have that;

$$|f(y)| \le ||h||_{L^{1}(\mathcal{R})} \le \frac{2D}{3} + E$$

$$|f'(y)| \le ||(2\pi ixh)||_{L^{1}(\mathcal{R})} \le 2\pi D + 2E$$

$$|f''(y)| \le ||-4\pi^{2}x^{2}h||_{L^{1}(\mathcal{R})} \le 8\pi^{2}D + 2E$$

Hence, we can take $F = max(8\pi^2 D + 2E, \frac{22\pi D}{3} + 4\pi E + 8\pi E' + 2\pi E'')$

Definition 1.7. Let f be given by satisfying the conditions of Lemmas 1.5 and 1.6, we let;

$$g(y) = \sum_{m \in \mathbb{Z}} f(y+m), \ (y \in [0,1])$$

Lemma 1.8. Let g be given by Definition 1.7, then $g \in C^2[0, 1]$.

Proof. Using Lemma 1.6 and Weierstrass' M-test, we have that the series;

$$\sum_{m \in \mathcal{Z}} f(y+m), \sum_{m \in \mathcal{Z}} f'(y+m), \sum_{m \in \mathcal{Z}} f''(y+m)$$

are uniformly convergent on [0, 1]. It follows, that $g \in C^2(0, 1)$, and clearly;

$$g'_{+}(0) = \sum_{m \in \mathcal{Z}} f'(m) = \sum_{m \in \mathcal{Z}} f'(m+1) = g'_{-}(1)$$

hence, $g \in C^{2}[0, 1]$.

Lemma 1.9. Let $f \in L^1(\mathcal{R})$, such that;

$$g(y) = \sum_{m \in \mathcal{Z}} f(y+m)$$

is defined, for $y \in [0, 1]$. Then, if $g \in C^2[0, 1]$, we have that the series $\sum_{m \in \mathbb{Z}} (f)^{\wedge}(m) e^{2\pi i y m}$ converges uniformly to g on [0, 1]. In particular;

$$\sum_{m \in \mathcal{Z}} f(m) = \sum_{m \in \mathcal{Z}} (f)^{\wedge}(m)$$

Proof. Following through the calculation in Theorem 1.3, we have that $g \in L^1([0,1])$, and $(g)^{\wedge}(m) = (f)^{\wedge}(m)$, for $m \in \mathbb{Z}$. Using the result of [3] or [4], we obtain the second part, the final claim is clear.

Lemma 1.10. Let f be given by satisfying the conditions of Lemmas 1.5 and 1.6, with respect to h, then;

$$\sum_{m \in \mathcal{Z}} f(m) = \sum_{m \in \mathcal{Z}} h(m)$$

Proof. Using Lemmas 1.5 and 1.6, we have that $g \in C^2[0,1]$, where g is defined by 1.8, and $(f)^{\wedge}(m) = h(m)$, for $m \in \mathbb{Z}$. By Lemmas 1.8

and 1.9, we have that;

$$\sum_{m \in \mathcal{Z}} f(m) = \sum_{m \in \mathcal{Z}} (f)^{\wedge}(m)$$

Hence;

$$\sum_{m \in \mathcal{Z}} f(m) = \sum_{m \in \mathcal{Z}} h(m)$$

as required.

Lemma 1.11. If $s \in \mathbb{Z}_{\geq 2}$, s even, then;

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{(-1)^{\frac{s+2}{2}} (2\pi)^s B_s}{2(s!)}$$

Proof. The proof of this result can be found in [4].

Definition 1.12. If $s \in C$, with $Re(s) \ge 4$, and $r \in \mathbb{Z}_{\ge 1}$, we define;

$$h_{s,r}(x) = \frac{1}{x^s}, \ (x \ge r)$$

 $h_{s,r}(x) = \frac{(-1)^s}{x^s} = \frac{e^{-i\pi s}}{x^s}, \ (x \le -r)$

Remarks 1.13. $h_{s,r}$ is symmetric, that is $h_{s,r}(x) = h_{s,r}(-x)$, for $|x| \ge r$.

Lemma 1.14. There exists a polynomial $p_{s,r}$ of degree 2r + 3, with the properties;

- (i). $p_{s,r}$ is symmetric, that is $p_{s,r}(x) = p_{s,r}(-x)$, for $x \in \mathcal{R}$.
- (*ii*). $p_{s,r}(n) = \frac{1}{n^s}$, for $1 \le n \le r$.

(*iii*).
$$p_{s,r}^{(k)}(r) = h_{s,r}^{(k),+}(r), \ (0 \le k \le 2)$$

(*iv*).
$$p_{s,r}^{(k)}(-r) = h_{s,r}^{(k),-}(-r), \ (0 \le k \le 2)$$

Proof. We let, for $1 \le j \le 1 + r$, $1 \le k \le r$;

$$\overline{A}_{r} = \begin{pmatrix} 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & 2^{2} & \dots & 2^{2j} & \dots & 2^{2(r+1)} \\ \dots & & & & \\ 1 & k^{2} & \dots & k^{2j} & \dots & k^{2(r+1)} \\ \dots & & & & \\ 1 & r^{2} & \dots & 2jr^{2j-1} & \dots & 2(r+1)r^{2r+1} \\ 0 & 2 & \dots & 2j(2j-1)r^{2j-2} & \dots & 2(r+1)(2r+1)r^{2r} \end{pmatrix}$$

$$\overline{b}_{s,r} = \begin{pmatrix} 1^{-s} & & \\ & \ddots & & \\ & k^{-s} & & \\ & \ddots & & \\ & k^{-s} & & \\ & \ddots & & \\ & & r^{-s} & & \\ & & -sr^{-(1+s)} \\ & s(s+1)r^{-(2+s)} \end{pmatrix}$$

We have that $det(\overline{A}_r) \neq 0$, hence, we can solve the equation $\overline{A}_r(\overline{a}_{s,r}) = \overline{b}_{s,r}$. Let $p_{s,r}(x) = \sum_{j=0}^{r+1} (\overline{a}_{s,r})_{(j+1)} x^{2j}$. We have, by construction, that $p_{s,r}(-x) = p_{s,r}(x)$, and $p_{s,r}^{(k)}(r) = h_{s,r}^{(k),+}(r)$. As both $p_{s,r}$ and $h_{s,r}$ are symmetric, we also have that, $p_{s,r}^{(k)}(r) = h_{s,r}^{(k),-}(-r)$, as required.

Definition 1.15. We define;

$$g_{s,r}(x) = h_{s,r}(x), \ (if |x| \ge r)$$

 $g_{s,r}(x) = p_{s,r}(x), \ (if |x| \le r)$

Lemma 1.16. We have that $g_{s,r} \in C^2(\mathcal{R})$, $g_{s,r}$ is symmetric, and, moreover, the hypotheses of Lemmas 1.4 and 1.6 hold for $g_{s,r}$.

Proof. The fact that $g_{s,r} \in C^2(\mathcal{R})$ follows immediately from Conditions (*iii*) and (*iv*) of Lemma 1.14. The symmetry condition is a consequence of Condition (*i*). If $x \geq r$, we have that;

$$|g_{s,r}(x)| \le |x^{-Re(s)}| |x^{-Im(s)}| \le |x|^{-4}$$

Hence, as $g_{s,r}$ is symmetric, $|g_{s,r}(x)| \le |x|^{-4}$, for $|x| \ge r$.

If
$$|x| \le r$$
;
 $|g_{s,r}(x)| = |p_{s,r}(x)| \le r^{2r+2} \sum_{j=0}^{r+1} |(\overline{a}_{s,r})_{(j+1)}| \le r^{2r+2} \sqrt{r+2} ||\overline{a}_{s,r}||$

It follows that $\sup_{x \in \mathcal{R}} (|x|^4 |g_{s,r}(x)|) \leq \max(1, r^{2r+6}\sqrt{r+2} ||\overline{a}_{s,r}||)$. Similarly, as $g'_{s,r}(x) = \frac{-s}{x^{s+1}}, g''_s(x) = \frac{s(s+1)}{x^{s+2}}, |x| > r$, then, if |x| > r, we have that;

$$\begin{aligned} |g_{s,r}'(x)| &\leq |s||x|^{-5} \\ |g_{s,r}'(x)| &\leq |s||s-1||x|^{-6} \\ \text{and, if } |x| &\leq r; \\ |g_{s,r}'(x)| &= |p_{s,r}'(x)| \leq r^{2r+2} (\sum_{j=1}^{r+1} |2j(\overline{a}_{s,r})_{(j+1)}|) \leq 2(r+1)r^{2r+2}\sqrt{r+2} ||\overline{a}_{s,r}|| \\ |g_{s}''(x)| &= |p_{s}''(x)| \leq r^{2r+2} (\sum_{j=1}^{r+1} |2j(2j-1)(\overline{a}_{s,r})_{(j+1)}|) \leq (2r+2)(2r+1)r^{2r+2}\sqrt{r+2} ||\overline{a}_{s}|| \end{aligned}$$

so that;

$$sup_{x\in\mathcal{R}}(|x|^{5}|g_{s,r}'(x)|) \le max(|s|, 2(r+1)r^{2r+7}\sqrt{r+2}||\overline{a}_{s}||)$$

$$sup_{x\in\mathcal{R}}(|x|^{6}|g_{s,r}''(x)|) \le max(|s||s-1|, (2r+2)(2r+1)r^{2r+8}\sqrt{r+2}||\overline{a}_{s}||)$$

(*)

It follows that Lemmas 1.4 and 1.6 holds for $g_{s,r}$, with $C = D = max(|s||s-1|, (2r+2)(2r+1)r^{2r+8}\sqrt{r+2}||\overline{a}_s||.$

-	-	-	
L			
L		1	

9

Definition 1.17. We let $f_{s,r}(y) = \int_{\mathcal{R}} g_{s,r}(x) e^{2\pi i x y} dx$.

$$\begin{split} R_{s,r,1} &= \sum_{n \in \mathcal{Z}_{\neq 0}} \left(\int_r^\infty \frac{e^{2\pi i n x}}{x^s} dx \right) \\ R_{s,r,2} &= \sum_{n \in \mathcal{Z}_{\neq 0}} \left(\int_r^\infty \frac{e^{-2\pi i n x}}{x^s} dx \right) \\ R_{s,r} &= R_{s,r,1} + R_{s,r,2} \\ P_{s,r,1} &= \sum_{n \in \mathcal{Z}_{\neq 0}} \left(\int_0^r p_{s,r}(x) e^{2\pi i n x} dx \right) \end{split}$$

$$P_{s,r,2} = \sum_{n \in \mathbb{Z}_{\neq 0}} \left(\int_0^r p_{s,r}(x) e^{-2\pi i n x} dx \right)$$
$$P_{s,r} = P_{s,r,1} + P_{s,r,2}$$

Lemma 1.18. We have that $f_{s,r}$ is symmetric, and $f_{s,r}$ satisfies the conclusions of Lemmas 1.5 and 1.6. Moreover;

$$f_{s,r}(0) + P_{s,r} + R_{s,r} = p_{s,r}(0) + 2\sum_{n=1}^{\infty} \frac{1}{n^s}$$

Proof. The second part follows immediately from Definition 1.17, and Lemmas 1.16, 1.5 and 1.6. It follows that $f_{s,r} \in L^1(\mathcal{R})$, and;

$$f_{s,r}(-y) = \int_{\mathcal{R}} g_{s,r}(x) e^{-2\pi i x y} dx$$
$$= \int_{\mathcal{R}} g_{s,r}(-x) e^{2\pi i x y} dx$$
$$= \int_{\mathcal{R}} g_{s,r}(x) e^{2\pi i x y} dx$$
$$= f_{s,r}(y)$$

Hence, $f_{\boldsymbol{s},\boldsymbol{r}}$ is symmetric. By Lemma 1.10 , we have that;

$$\sum_{n \in \mathcal{Z}} f_{s,r}(n) = \sum_{n \in \mathcal{Z}} g_{s,r}(n)$$

As both $f_{s,r}$ and $g_{s,r}$ are symmetric, using Definition 1.15 and property (ii) of Lemma 1.14, we obtain;

$$f_{s,r}(0) + P_{s,r} + R_{s,r}$$

= $f_{s,r}(0) + \sum_{n \in \mathbb{Z}_{\neq 0}} f_{s,r}(n)$
= $g_{s,r}(0) + 2(\sum_{n=1}^{\infty} g_{s,r}(n))$
= $p_{s,r}(0) + 2(\sum_{n=1}^{\infty} \frac{1}{n^s})$

Lemma 1.19. We have that;

 $|R_{s,r}| \le \frac{2|s|^2}{3(Re(s)+1)r^{Re(s)+1}}$

$$P_{s,r} = p_{s,r}(0) + p_{s,r}(r) + 2\sum_{l=1}^{r-1} p_{s,r}(l) - 2\int_0^r p_{s,r}(x)dx$$

Proof. We have that;

$$\begin{split} R_{s,r,1} &= \sum_{n \in \mathbb{Z}_{\neq 0}} \frac{-1}{2\pi i n r^s} + \sum_{n \in \mathbb{Z}_{\neq 0}} \frac{s}{2\pi i n} \int_r^\infty \frac{e^{2\pi i n x}}{x^{s+1}} dx \\ &= \sum_{n \in \mathbb{Z}_{\neq 0}} \frac{-s}{r^{s+1} (2\pi i n)^2} + \sum_{n \in \mathbb{Z}_{\neq 0}} \frac{s(s+1)}{(2\pi i n)^2} \int_r^\infty \frac{e^{2\pi i n x}}{x^{s+2}} dx \\ &= \frac{2s}{4r^{s+1} \pi^2} \sum_{n=1}^\infty \frac{1}{n^2} + D_{s,r,1} \\ &= \frac{s}{2r^{s+1} \pi^2} \frac{\pi^2}{6} + D_{s,r,1} \\ &= \frac{s}{12r^{s+1}} + D_{s,r,1} \end{split}$$

where;

$$\begin{split} |D_{s,r,1}| &\leq \frac{|s(s+1)|C_{s,r,1}}{4\pi^2} \sum_{n \in \mathbb{Z}_{\neq 0}} \frac{1}{n^2} = \frac{|s(s+1)|C_{s,r,1}}{12} \\ \text{and } C_{s,r,1} &\leq \int_r^\infty \frac{1}{|x^{s+2}|} dx \\ &= \int_r^\infty \frac{dx}{x^{Re(s)+2}} \\ &= \frac{1}{(Re(s)+1)r^{Re(s)+1}} \\ \text{It follows that;} \end{split}$$

$$\begin{aligned} |R_{s,r,1}| &\leq \frac{|s|}{12r^{Re(s)+1}} + \frac{|s(s+1)|}{12(Re(s)+1)r^{Re(s)+1}} \\ &\leq \frac{|s|(Re(s)+1)}{12(Re(s)+1)r^{Re(s)+1}} + \frac{|s(s+1)|}{12(Re(s)+1)r^{Re(s)+1}} \\ &= \frac{|s|(Re(s)+1)+|s(s+1)|}{12(Re(s)+1)r^{Re(s)+1}} \\ &\leq \frac{2|s(s+1)|}{12(Re(s)+1)r^{Re(s)+1}} \\ &\leq \frac{|s|^2}{3(Re(s)+1)r^{Re(s)+1}} \\ &\leq \frac{|s|^2}{3(Re(s)+1)r^{Re(s)+1}} \\ &\text{Similarly, } |R_{s,r,2}| \leq \frac{|s|^2}{3(Re(s)+1)r^{Re(s)+1}}, \text{ so that } |R_{s,r}| \leq \frac{2|s|^2}{3(Re(s)+1)r^{Re(s)+1}}. \end{aligned}$$

We have that;

$$\begin{split} P_{s,r,1} &= \sum_{n \in \mathbb{Z}_{\neq 0}} \left(\int_{0}^{r} p_{s,r}(x) e^{2\pi i n x} dx \right) \\ &= \sum_{n \in \mathbb{Z}_{\neq 0}} \left(\sum_{l=0}^{r-1} \int_{l}^{l+1} p_{s,r}(x) e^{2\pi i n x} dx \right) \\ &= \sum_{l=0}^{r-1} \left(\sum_{n \in \mathbb{Z}_{\neq 0}} \left(\int_{l}^{l+1} p_{s,r}(x) e^{2\pi i n x} dx \right) \right) \\ &= \sum_{l=0}^{r-1} \left(\sum_{n \in \mathbb{Z}_{\neq 0}} \left(\int_{0}^{1} p_{s,r}(x+l) e^{2\pi i n (x+l)} dx \right) \right) \\ &= \sum_{l=0}^{r-1} \left(\sum_{n \in \mathbb{Z}_{\neq 0}} \left(\int_{0}^{1} p_{s,r}(x+l) e^{2\pi i n x} dx \right) \right) \\ &= \sum_{l=0}^{r-1} \left(\sum_{n \in \mathbb{Z}_{\neq 0}} \left(p_{s,r}^{l} \right)^{\vee}(n) \right) \\ &= \sum_{l=0}^{r-1} \left(\sum_{n \in \mathbb{Z}_{\neq 0}} \left(p_{s,r}^{l} \right)^{\vee}(n) - \int_{0}^{1} p_{s,r}^{l} dx \right), \quad (3) \end{split}$$

³If $f \in (C[0,1] \cap C^2(0,1))$, and there exist $\{a_{+,j}, a_{-,j} : 0 \leq j \leq 2\} \subset C$, with $\lim_{x\to 0^+} f^{(j)}(x) = a_{+,j}$ and $\lim_{x\to 1^-} f^{(j)}(x) = a_{-,j}$, (\dagger), for $0 \leq j \leq 2$, then a classical result in the theory of Fourier series, says that;

$$\lim_{N \to \infty} \sum_{n=-N}^{N} (f)^{(\wedge)}(n) e^{2\pi i n x} = f(x) \ (x \in (0,1))$$
$$\lim_{N \to \infty} \sum_{n=-N}^{N} (f)^{(\wedge)}(n) = \frac{a_{+,0} + a_{-,0}}{2}$$

We give a simple proof of this result. First observe that there exists a polynomial $p \in C[x]$, with deg(p) = 5, such that $p^{(j)}(0) = 0$ and $p^{(j)}(1) = a_{-,j} - a_{+,j}$, for $0 \le j \le 2$. This follows from the fact that we can find $\overline{c} \subset C^3$, such that $\overline{M} \cdot \overline{c} = \overline{a}$, where $\overline{a}(j) = a_{-,j-1} - a_{+,j-1}$, for $1 \le j \le 3$, and;

$$\overline{M} = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 4 & 5 \\ 6 & 12 & 20 \end{pmatrix}$$

as $det(\overline{M}) \neq 0$, and, setting $p(x) = \sum_{k=0}^{2} c_k x^{3+k}$. We have that $p+f \in C^2(S^1)$, in which case the result follows from [3]. Hence, it is sufficient to verify the result for the powers $\{x^k : 0 \leq k \leq 5\}$. We have that, for $k \geq 1$, $n \in \mathbb{Z}_{\neq 0}$;

$$\begin{split} &\int_{0}^{1} x^{k} e^{-2\pi i n x} dx \\ &[\frac{x^{k} e^{-2\pi i n x}}{-2\pi i n}]_{0}^{1} + \frac{k}{2\pi i n} \int_{0}^{1} x^{k-1} e^{-2\pi i n x} dx \\ &\frac{-1}{2\pi i n} + \frac{k}{2\pi i n} \int_{0}^{1} x^{k-1} e^{-2\pi i n x} dx \\ &\int_{0}^{1} x^{k} e^{-2\pi i n x} dx \\ &= -(\sum_{l=1}^{k} \frac{k!}{(k-l+1)!(2\pi i n)^{l}}) + \int_{0}^{1} e^{-2\pi i n x} dx \\ &= -(\sum_{l=1}^{k} \frac{k!}{(k-l+1)!(2\pi i n)^{l}}) \end{split}$$

$$= \sum_{l=0}^{r-1} \left(\frac{p_{s,r}^{l}(1) + p_{s,r}^{l}(0)}{2} - \int_{0}^{1} p_{s,r}^{l} dx \right)$$

$$= \sum_{l=0}^{r-1} \left(\frac{p_{s,r}(l+1) + p_{s,r}(l)}{2} - \int_{0}^{1} p_{s,r}(x+l) dx \right)$$

$$= \sum_{l=0}^{r-1} \left(\frac{p_{s,r}(l+1) + p_{s,r}(l)}{2} - \int_{l}^{l+1} p_{s,r}(x) dx \right)$$

$$= \frac{p_{s,r}(0) + p_{s,r}(r)}{2} + \sum_{l=1}^{r-1} p_{s,r}(l) - \int_{0}^{r} p_{s,r}(x) dx$$

Similarly;

$$P_{s,r,2} = \frac{p_{s,r}(0) + p_{s,r}(r)}{2} + \sum_{l=1}^{r-1} p_{s,r}(l) - \int_0^r p_{s,r}(x) dx$$

so that;

$$P_{s,r} = P_{s,r,1} + P_{s,r,2}$$

$$\begin{split} \lim_{N \to \infty} \sum_{n=-N}^{N} (x^k)^{\wedge}(n) \\ &= \frac{1}{k+1} - 2 \sum_{l=1}^{k} \sum_{n=1}^{\infty} \frac{k!}{(k-l+1)!(2\pi in)^l} \\ \text{Case } k = 1, \text{ we obtain } S_k = \frac{1}{2} \\ k = 2, S_k = \frac{1}{3} + \frac{2.2}{4\pi^2} (\sum_{n=1}^{\infty} \frac{1}{n^2}) \\ k = 3, S_k = \frac{1}{4} + \frac{2.3}{4\pi^2} (\sum_{n=1}^{\infty} \frac{1}{n^2}) \\ k = 4, S_k = \frac{1}{5} + \frac{2.4}{4\pi^2} (\sum_{n=1}^{\infty} \frac{1}{n^2}) - \frac{2.24}{16\pi^4} (\sum_{n=1}^{\infty} \frac{1}{n^4}) \\ k = 5, S_k = \frac{1}{6} + \frac{2.5}{4\pi^2} (\sum_{n=1}^{\infty} \frac{1}{n^2}) - \frac{2.120}{16\pi^4} (\sum_{n=1}^{\infty} \frac{1}{n^4}) \end{split}$$

Using Lemma 1.11, we have that;

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{-\pi [\cot(\pi z)z]^{(2)}|_0}{2.2!} = \frac{-\pi .-4\pi}{6.2.2!} = \frac{\pi^2}{6}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{-\pi [\cot(\pi z)z]^{(4)}|_0}{2.4!} = \frac{-\pi .-48\pi^3}{90.2.4!} = \frac{\pi^4}{90}$$

$$S_2 = \frac{1}{3} + \frac{2.2}{4\pi^2} (\frac{\pi^2}{6}) = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$$

$$S_3 = \frac{1}{4} + \frac{2.3}{4\pi^2} \frac{\pi^2}{6} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$S_4 = \frac{1}{5} + \frac{2.4}{4\pi^2} \frac{\pi^2}{6} - \frac{2.24}{16\pi^4} \frac{\pi^4}{90} = \frac{1}{2}$$

$$S_5 = \frac{1}{6} + \frac{2.5}{4\pi^2} \frac{\pi^2}{6} - \frac{2.60}{16\pi^4} \frac{\pi^4}{90} = \frac{1}{2}$$

$$= p_{s,r}(0) + p_{s,r}(r) + 2\sum_{l=1}^{r-1} p_{s,r}(l) - 2\int_0^r p_{s,r}(x)dx$$

Lemma 1.20. If $Re(s) \ge 4$, $r \ge 1$, we have that;

$$\sum_{n=r}^{\infty} \frac{1}{n^{s}}$$

$$= \int_{r}^{\infty} \frac{dx}{x^{s}} + \frac{p_{s,r}(r)}{2} + \frac{R_{s,r}}{2}$$

$$= \frac{1}{(s-1)r^{s-1}} + \frac{R_{s,r}}{2} + \frac{r^{s}}{2}$$
If $r \ge 2$;
$$\sum_{n=1}^{r-1} \frac{1}{n^{s}}$$

$$= \sum_{j=0}^{r+1} (\overline{a}_{s,r})_{j+1} (\frac{B_{2j+1}(r)}{2j+1})$$

Proof. The first claim is just a simple rearrangement of the claim in Lemma 1.18, using Lemma 1.19. We have that;

$$\int_{r}^{\infty} \frac{dx}{x^{s}} = \frac{1}{(s-1)r^{s-1}}$$

and $\frac{p_{s,r}(r)}{2} = \frac{r^{s}}{2}$, by property (*ii*) in Lemma 1.14.
Moreover;

$$\sum_{n=1}^{r-1} \frac{1}{n^s}$$

$$= \sum_{l=1}^{r-1} p_{s,r}(l)$$

$$= \sum_{l=0}^{r-1} \sum_{j=0}^{r+1} (\overline{a}_{s,r})_{j+1} l^{2j}$$

$$= \sum_{j=0}^{r+1} (\overline{a}_{s,r})_{j+1} (\sum_{l=0}^{r-1} l^{2j})$$

$$= \sum_{j=0}^{r+1} (\overline{a}_{s,r})_{j+1} (\frac{B_{2j+1}(r) - B_{2j+1}(0)}{2j+1})$$

$$= \sum_{j=0}^{r+1} (\overline{a}_{s,r})_{j+1} (\frac{B_{2j+1}(r)}{2j+1})$$

Remarks 1.21. Using Lemma 1.19, we have that $\lim_{r\to\infty} |R_{s,r}| = 0$, hence, Lemma 1.20 reduces the calculation of $\sum_{n=1}^{\infty} \frac{1}{n^s}$ to a calculation

involving Bernoulli polynomials. Moreover, letting $A_{s,r} = \sum_{n=r}^{\infty} \frac{1}{n^s}$, we have that;

$$\begin{split} \int_{r}^{\infty} \frac{dx}{|x^{s}|} &\leq |A_{s,r}| \leq \int_{r-1}^{\infty} \frac{dx}{|x^{s}|} \\ \int_{r}^{\infty} \frac{dx}{x^{Re(s)}} &\leq |A_{s,r}| \leq \int_{r-1}^{\infty} \frac{dx}{|x^{s}|} \\ \frac{1}{(Re(s)-1)r^{Re(s)-1}} &\leq |A_{s,r}| \leq \frac{1}{3(r-1)^{3}} \\ Observing that; \\ \frac{|s|^{2}}{3(Re(s)+1)r^{Re(s)+1}} &\leq \frac{1}{(Re(s)-1)r^{Re(s)-1}} \\ if r &\geq |s| \sqrt{\frac{(Re(s)-1)}{3(Re(s)+1)}}, we have that the estimate \sum_{j=0}^{r+1} (\overline{a}_{s,r})_{j+1} (\frac{B_{2j+1}(r)}{2j+1}) + \\ \frac{1}{(s-1)r^{s-1}} + \frac{1}{2r^{s}} improves upon \sum_{j=0}^{r+1} (\overline{a}_{s,r})_{j+1} (\frac{B_{2j+1}(r)}{2j+1}), for sufficiently \\ large values of r. The coefficients (\overline{a}_{s,r})_{j}, 1 \leq j \leq r+2 can be computed \\ using simple linear algebra. The computation of absolutely convergent \\ Riemann sums, and their differences, occurs in the evaluation of $\zeta(s), \\ for 0 < Re(s) < 1, it is well known that $\zeta(s) \neq 0, for Re(s) \geq 1. \\ It is hoped that the above method might lead to some progress in the \\ direction of solving the famous Riemann hypothesis, that, $\zeta(s) = 0$ iff $Re(s) = \frac{1}{2} \text{ or } s = -2w, for w \in \mathbb{Z}_{\geq 1}, see [1]. \end{split}$$$$$

References

- [1] Introduction to Analytical Number Theory, Springer, T. Apostol, (1976)
- [2] A Simple Proof of the Inversion Theorem using Nonstandard Analysis, available at http://www.magneticstrix.net, T. de Piro, (2013).
- [3] A Simple Proof of the Uniform Convergence of Fourier Series using Nonstandard Analysis, available at http://www.magneticstrix.net, T.de Piro, (2013).
- [4] Fourier Analysis: An Introduction, Princeton Lecture Series, E. Stein, R. Shakarchi, (2003).

MATHEMATICS DEPARTMENT, HARRISON BUILDING, STREATHAM CAMPUS, UNIVERSITY OF EXETER, NORTH PARK ROAD, EXETER, DEVON, EX4 4QF, UNITED KINGDOM